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EXCUTIVE SUMMARY 

In the past decade, unmanned aerial vehicles (UAV) have become increasingly more popular in 

the commercial sector. Drones are being used for all kinds of purposes, such as surveillance, 

inspecting architecture, filming, wildlife research, and more. Freight delivery is a potential 

application that is getting lots of attention from large companies. 

This research presented novel data, relationship, and models for deliveries utilizing small UAVs. 

Small UAVs were defined as aircrafts with a tare of up to 15 kilograms (kg) and a potential payload 

of up to 15 kg. Since the weight of the UAVs is capped, only drones with engines that are electric 

were included; noise and pollution problems are likely to hinder urban deployments of internal 

combustion engines. Internal combustion engines are mostly used in larger UAVs. The scope of 

the search was limited to multicopter drones that can potentially deliver in both urban and rural 

areas. Fixed-wing drones were excluded from the search because currently only copters have the 

capability of hovering and delivering products in tight spaces (required in urban areas); fixed-wing 

UAVs typically cannot land or take off vertically. Single copters can hover similarly to helicopters, 

but were not included in the search because these aircrafts tend to be larger, and the size of the 

propeller and blade made them unsafe for areas without a large. Multicopters or multi-rotor drones 

can hover but also have higher stability and maneuverability, which makes them more suitable for 

navigating tight spaces or flying near humans and/or valuable property. 

The survey of currently available UAVs shows that payload, size, energy consumption, and cost 

are positively correlated and tend to increase together. Unfortunately, potential safety, noise, and 

last-yard constraints also increase as drone capabilities and size increase. 

Cost metrics such as cost per flying hour (CPFH) are the most relevant for small UAVs since they 

readily take into account the impact of operator labor cost and utilization, clearly the largest cost 

components. The economic analysis indicates that labor/staff costs can range between 30% and 

85% of UAV costs per flying hour. The impact of labor costs will be highly dependent on future 

regulations and the level of automation of the last-mile delivery process. 

A novel analysis of lifecycle UAV and ground commercial vehicles’ CO2e emissions is presented. 

Different route and customer configurations are modeled analytically. Utilizing real-word data, 

tradeoffs and comparative advantages of UAVs are discussed. Breakeven points for operational 

emissions are obtained and the results clearly indicate that UAVs are more CO2e efficient for small 

payloads than conventional diesel vans on a per-distance basis. Drastically different results are 

obtained when customers can be grouped in a delivery route. UAV deliveries are not more CO2e 

efficient than tricycle or electric van delivery services if a few customers can be grouped in a route. 

Vehicle phase CO2e emissions for UAVs are significant and must be taken into account. Ground 

vehicles are more efficient when comparing vehicles’ production and disposal emissions per 

delivery. 

Currently available UAV technology can fill a delivery service niche in sparsely populated areas 

with low numbers of customers and density. In rural areas, the regulatory landscape and last-yard 

delivery constraints are also more relaxed. In rural areas, the economic benefit brought about by 
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reducing the cost of a driver to visit remote customers are obvious, but in this environment, UAV 

range is a key consideration. In dense urban areas, several first- and last-mile service, privacy, 

regulatory, and security issues must be addressed before UAV services are feasible. UAVs are 

likely to have an edge regarding speed delivery if they are operated in uncongested skies where 

they can outperform slower ground vehicles delayed by conditions of the congested ground road 

network. On the other hand, drones may not be able to compete solely in terms of costs with a 

delivery truck that can deliver hundreds of packages to one location in an urban setting. The urban 

landscape is a place where larger payload capacity may be more beneficial than flight distance for 

some delivery types. 

The future of UAV deliveries will also depend on other factors such as UAV noise levels, 

regulations and safety concerns, and last-yard delivery configurations. 
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1.0 INTRODUCTION  

The integration of new vehicles and technologies in goods distribution and service delivery 

depends on a number of factors related to vehicle costs, technology, infrastructure, energy sources, 

and financial incentives. 

From filming movies or researching a pod of whales to delivering medication or an explosive 

payload, UAVs are being increasingly utilized for a wide range of tasks. Since 2002 when the 

Predator drone was first used by the U.S. military in Afghanistan (Sifton, 2012), drones have 

become smaller and cheaper, making it feasible for people to imagine alternate uses for UAVs, 

like delivering freight. 

Since 2011, big names like UPS, Amazon, and Google have thrown their hat into the UAV delivery 

ring, while other lesser-known companies like Matternet and Zipline have actually started delivery 

services in Rwanda, Australia, Switzerland, and Bhutan (Mack, 2018). UAVs have become a 

popular topic of conversation and an exciting source of speculation regarding how they might 

change the status quo for many businesses. 

 

1.1 RESEARCH GOALS 

Drones are not restricted by the availability of existing infrastructure and can therefore lead to 

improved last-mile efficiency, safety, and reliability. Unmanned aerial vehicles (UAV) for package 

delivery have a lot of potential to improve logistics productivity and reduce costs and 

environmental externalities such as trucking diesel engine pollution. 

The main goal of this research is to analyze, based on a survey of state-of-the-art UAVs, main 

capabilities and limitations of UAVs in the freight industry. The real-world data collection, 

analysis, and focus is on UAVs with electric engines. The focus is on UAVs that are small enough 

to be deployed for deliveries in dense urban areas. Hence, small UAVs are defined as aircrafts 

with a tare of up to 15 kilograms (kg) and a potential payload of up to 15 kg. 

This research studies the key factors that affect UAV delivery costs, as well as UAV energy 

efficiency and the carbon footprint for last-mile deliveries. A survey of current UAVs is utilized 

to draw real-world data parameters and to model different scenarios such as one-to-one deliveries 

and one-to-many deliveries. 

A novel modeling framework based on a UAV performance model is utilized to analyze key 

drivers of UAV costs, energy consumption, and CO2e emissions. The modeling framework 

includes constraints for battery energy storage, service range, and delivery times.  
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1.2 ORGANIZATION 

This report is organized into nine sections or chapters. An extensive, yet not comprehensive, 

literature review is presented in Section 2. Key equations governing UAV flight, logistical 

capabilities, and energy consumption are introduced in Section 3. A survey of existing small UAV 

aircrafts and graphs showing key relationships among tare, payload, purchase cost, and energy 

consumption are analyzed in Section 4. The economic analysis of UAV operations utilizing the 

cost per flying hour metric is presented in Section 5. Models to quantify and compare UAV energy 

consumption and emissions are discussed in Sections 6 and 7, respectively. The report concludes 

with a brief discussion of issues that may hinder UAV deployment, and conclusions in Sections 8 

and 9, respectively. 
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2.0 LITERATURE REVIEW 

There is a growing literature related to small UAVs. This section highlights some key concepts 

and references but is not a comprehensive examination of the rapidly evolving and growing body 

of UAV literature. Many papers in the applied electronics and engine control areas have focused 

on UAV technology, software, and design issues; these papers, for example, Bristeau et al. (2011), 

are not reviewed herein because they are not directly relevant to the topic discussed in this report. 

2.1 LOGISTICS APPLICATIONS 

Potential advantages and disadvantages of UAVs have already been considered by logistics 

companies. For example, the logistics services company DHL has identified higher last-mile 

efficiency, reduction of accidents, and faster deliveries as key potential UAV benefits; key 

potential challenges associated with UAVs are security, privacy, congestion, and regulatory 

concerns (Heutger and Kuckelhaus, 2014). UAVs have been featured frequently in the media 

following announcements made by large corporations such as Amazon (Anderson, 2004) but less 

frequently in the logistics academic literature. The academic literature discussing UAVs’ pros and 

cons or attempting to model UAV performance is rather scant. D’Andrea (2014) provides a 

succinct and preliminary discussion and modeling of UAV energy usage and delivery costs. 

Payload, lift-to-drag ratio, headwind, and travel speed do have a significant impact on UAV 

performance (D’Andrea, 2014). 

The academic literature has already documented the advantages UAVs can provide in delivering 

medicines to remote locations (Thiels et al., 2015). Other researchers have analyzed UAVs’ 

potential applications and challenges (Mohammed et al., 2014) and some authors have focused 

on the regulatory barriers that can preclude large UAV deployments (Boyle, 2015). 

Other researchers have analyzed the fit between product characteristics and UAV performance. 

For example, Wright et al. (2018) looked at various transport options for a variety of delivery 

categories using UAVs and modes such as land cruisers and motorcycles to examine the cost-

effectiveness of UAVs for the delivery of blood for transfusion, medicines, vaccines, and long-

tail products. 
 

2.2 HEALTH APPLICATIONS 

UAVs that deliver cargo are already in operation in several different countries. Mostly, these 

UAVs were specifically tailored to meet the particular demands of the job or service. For example, 

in Rwanda, there is a great need for life-saving blood medicines in rural parts of the country, but 

the road infrastructure is very poor. A company called Zipline (2017) has started using fixed-wing 

autonomous drones to deliver these medicines via parachute faster than any other kind of 

transportation available. 

Some researchers have studied the utilization delivery of UAVs to deliver defibrillators (Boutilier 

et al., 2017; Claesson et al., 2017) or blood (Amukele et al., 2017). Drones are particularly suitable 

for emergency applications like search and rescue (Karaca et al., 2018), deliveries of critical 
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medical supplies post-disaster, or for emergency response (Ozdamar, 2011; Anaya-Arenas et al., 

2014; Thiels et al., 2015; Scott and Scott, 2018). 

 

2.3 EMISSIONS 

Transportation accounts for a large share of total GHG emissions in most developed countries 

(Hertwich et al., 2009). Regarding UAV operational emissions, Goodchild and Toy (2017) 

compared VMT and CO2 emissions using scenarios when deliveries are  only made by UAVs or 

conventional trucks. Results suggest that UAVs emit less emissions when customers are located 

close to the depot, and trucks emit less for faraway customers. The authors suggest that UAVs and 

trucks can complement each other. The idea of utilizing both UAV and trucks to improve overall 

delivery efficiency has also been analyzed by several authors (see subsection 2.5), but this research 

focuses on the actual design of routes and logistics systems (Mathew et al., 2015; Murray and Chu, 

2015; Wang et al. 2017).  

Regarding UAV energy consumption, Choi and Schonfeld (2017) model the impact of battery 

capacity on payloads and flight ranges. Numerical analysis is utilized to optimize the drone fleet 

size and minimize delivery costs. This study concludes that UAV deliveries are more economical 

in areas with high customer density and that improved battery technology can significantly reduce 

UAV fleet size. There are tradeoffs associated with delivery speeds but clear benefits from longer 

hours of operation. 

Figliozzi (2017) uses continuous approximation techniques and derives analytical formulas to 

compare operational and lifecycle emissions and energy consumptions of UAVs with conventional 

diesel, electric vans, and tricycle delivery services. Figliozzi (2017) shows that the delivery 

strategy (grouping of customers in a route) affects the relative CO2 emission efficiencies. Stolaroff 

et al. (2018) confirmed previous findings regarding UAV emissions. Moore (2019) compared the 

operational emissions of six scenarios: conventional class six trucks, electric class six trucks, 

electric delivery vans, parcel delivery lockers, drones, and the use of electric passenger vehicles 

for en-route deliveries; results indicate that electric trucks paired with parcel delivery lockers tend 

to be the most energy efficient combination. 

2.4 LOCATION MODELS 

Another line of research has focused on the location of UAV facilities. For example, Chowdhury 

et al. (2017) used a continuous approximation approach to develop a humanitarian logistics supply 

chain post-disaster, considering both drones and truck deliveries. Golabi et al. (2017) studied the 

relief distribution center location model, where inaccessible demand points are served using 

drones. Pulver and Wei (2018) developed a facility location model to maximize primary and 

secondary coverage in the context of transporting and delivering medical supplies. Kim et al. 

(2017) developed a two-stage model for drone-based pickup and deliveries of medical supplies, 

and Hong et al. (2018) studied a drone recharging facility location problem, which can help 

increase the coverage range of drones for commercial deliveries. Chauhan et al. (2019) model the 

optimal location of UAV facilities, taking into account drone energy consumption as a function of 

payload and distance within a drone maximum coverage location problem framework. 



 

15 

 

2.5 VEHICLE ROUTING 

A large body of research has focused on UAV or drone routing and scheduling, leading to several 

interesting variants of the traveling salesman and vehicle routing problems. Murray and Chu 

(2015) studied the flying sidekick traveling salesman problem (FSTSP), where a drone and a truck 

deliver in collaboration to a set of customers. Ponza (2016) modified the drone delivery time 

constraints in Murray and Chu (2015)’s FSTSP formulation and developed a simulated annealing 

metaheuristic. Agatz et al. (2018) denoted the FSTSP as Traveling Salesman Problem with Drones 

(TSPD), provided approximation results comparing TSPD and TSP optimal solution, and 

developed several route-first cluster second heuristics that vary in the initial tour generation and 

assignment of drone delivery nodes. Yurek and Ozmutlu (2018) solved the TSPD using a two-

stage iterative decomposition approach in which truck routes are determined in the first stage and 

drone nodes are assigned in the second stage. Ha et al. (2018) focused on the min-cost TSPD 

variant of Murray and Chu (2015)’s FSTSP and developed a greedy randomized adaptive search 

procedure that builds TSPD routes from TSP routes. Otto et al. (2018) provide a detailed review 

of all optimization-based papers on civil applications of drones and UAVs. 

Dorling et al. (2017) modeled the drone delivery problem as a single depot multi-trip vehicle 

routing problem, whereas Kim et al. (2018) use a robust optimization approach to model the impact 

of air temperature uncertainty on drone battery capacity and studied the ability of a fleet of drones 

to visit multiple locations. 

2.6 REGULATORY CONSTRAINTS 

In 2016, the Federal Aviation Administration (FAA) issued restrictions on the non-recreational 

use of unmanned aerial vehicles, which effectively prohibited freight delivery from using drones 

in the U.S. (FAA, 2016). Some restrictions do not affect the drones surveyed  in  Section 4 (400’ 

maximum altitude, 45 m/s (100 mph) maximum land speed). However, other restrictions prevent 

any business from currently utilizing drones in a freight delivery service. For example, drones must 

be flown using VLOS (visual line of sight) at all times, which would greatly reduce the size of the 

service area, especially in forested hilly terrains or dense areas with skyscrapers, and reduce the 

economic benefit of not having a human pilot in the UAV. 

The FAA is partnering with NASA to study when drones can be used in U.S. National Airspace 

and in what capacities (NASA, 2015). NASA is working on an air traffic management system for 

drones similar to what exists for today’s air traffic, except that the UAV air space resides mainly 

within altitudes from 200’ to 500’. This is critical to ensure that the digital aviation infrastructure, 

which would be designed to organize the many different paths of the UAVs, would prevent drones 

from crashing into one another or flying into a restricted zone. A predictable regulatory framework 

(FAA, 2018) is expected to accelerate large-scale UAV adoption. 
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3.0 MODELING UAV FLIGHT  

Before surveying UAV characteristics or estimating UAV costs/emissions, it is first necessary to 

understand the physics of UAV flight. This section reviews key formulas and factors that govern 

airborne vehicles’ productivity and energy consumption. 

3.1 STEADY FLIGHT 

There are many factors that affect airborne vehicles’ energy consumption. Drag, lift, weight, and 

thrust forces act over all self-propelled airborne vehicles, including airplanes, helicopters, and 

UAVs (Anderson and Eberhardt, 2001). 

Maintaining a steady level flight requires a balance of forces, i.e. an equilibrium of all the forces 

acting upon an airborne vehicle. According to Newton’s second law, when any object moving in 

a steady level trajectory at a constant velocity has zero acceleration, all forces applied to the aircraft 

are balanced. For an airborne vehicle in a steady level trajectory, there are four relevant forces: (i) 

weight, the force of gravity that acts in a downward direction, (ii) thrust, the force that propels the 

airborne vehicle in the direction of motion, (iii) lift, the force that acts at a right angle to the 

direction of motion through the air, and (iv) drag, the force that acts opposite to the direction of 

motion. When there is zero acceleration, level flight is at a constant velocity, the lift balances the 

weight, and the thrust balances the drag (Anderson and Eberhardt, 2001; D’Andrea, 2014). 

𝐿 = 𝑊, 𝐷 = 𝑇 

and 

𝐿

𝐷
𝑇 = 𝑚𝑔 

where: 

𝐷 = drag force [N]  

𝑇 = thrust force [N]  

𝐿 = lift force [N] 

𝑊 = weight force [N] 

𝑚 =  mass [kg] 

𝑔 =  gravity acceleration [m/s2]. 

 

An electric cargo UAV has three key mass components: vehicle, battery, and load. For aircrafts, 

the lift-to-drag ratio or L/D ratio is a key characteristic affecting flight efficiency and the power 
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necessary to fly as a function of travel speed. By disaggregating the vehicle weight into its 

components and then multiplying by travel speed, it is possible to obtain the theoretical power 

necessary to move the aircraft: 

 

𝑝𝑡 =  𝑇𝑠 = (𝑚𝑡 +  𝑚𝑏 +  𝑚𝑙  )𝑔 
𝑣

𝜗(𝑠)
 

 

where: 

𝑝𝑡 = theoretical power required for level flight [watts] 

𝑣 = constant velocity travel speed [m/s] 

𝜗(𝑣) = lift-to-drag ratio or L/D [unit-less] 

𝑚𝑡 = UAV mass tare, i.e. without battery and load [kg] 

𝑚𝑏 = UAV battery mass [kg] 

𝑚𝑙 = UAV load mass [kg] 

𝑚 =  UAV total mass when loaded [kg], 𝑚 =  𝑚𝑡 +  𝑚𝑏 +  𝑚𝑙. 

 

The energy necessary to travel a given distance is equal to power by travel time and also affected 

by the power transfer efficiency from the battery to the propellers (energy loss). The power 

required for level flight is: 

 

𝑝𝑙𝑡 =
(𝑚𝑡+ 𝑚𝑏+ 𝑚𝑙 )𝑔

𝜗(𝑠)𝜂𝑝
 𝑑  

where: 

𝑝𝑙 = power required for level flight [watts] 

𝑡 = travel time [seconds] = 𝑑/𝑠 

𝑑 = travel distance [m] 

𝜂𝑝 = total power transfer efficiency [unit-less] < 1. 
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From (1), it is possible to observe that energy consumption is directly proportional to aircraft mass 

and travel distance. Expression (1) does not include the power needed to feed the sensors and other 

electronics, which is relatively small for a long-range delivery drone. Travel speed drops out of 

expression (1); however, the ratio between Lift and Drag is typically a function of travel speed. 

For each aircraft, there is a speed where L/D is highest or optimal, which is defined as 𝜗∗. Cargo 

airplanes are more energy efficient than helicopters and UAVs; airplanes’ 𝜗∗values, in the range 

of 10 to 20, are several times higher than helicopters’ 𝜗∗ values, in the range of 3.5 to 5.0 

(Leishman, 2006). 

 

3.2 HOVER 

The power required to hover is proportional to the power of the helicopter weight (Johnson, 2012) 

and can be approximated by: 

𝑝ℎ = 𝑘ℎ  
𝑊

3
2

√2𝜌𝐴
 

where: 

𝑝ℎ =  power required to hover [watts] 

𝑊 = 𝑚𝑔 =  weight of the aircraft [N] 

𝐴 =   effective area of the blades 

𝜌 =  air density 

𝑘ℎ =   parameter that takes into account the aircraft figure of merit and the induced power factor. 

Hence, weight and payload are key factors affecting the performance of a UAV and their range. In 

practice, helicopters tend to be designed assuming a value of gross operational weight (Johnson, 

2012). 

 

3.3 STEADY LEVEL FLIGHT OPTIMAL SPEED AND MAX. RANGE 

On steady flight drag is the force that opposes the motion of an aircraft. Total drag is produced by 

the sum of the profile drag, induced drag, and parasite drag. 

Profile drag is the drag incurred from frictional resistance of the blades passing through the air. It 

is almost constant or increases moderately as airspeed increases. Induced drag is the drag incurred 

as a result of production of lift. In rotary-wing aircraft like small UAVs, induced drag decreases 

with increased aircraft airspeed. 
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Parasite drag is the drag incurred from the non-lifting portions of the aircraft. Parasite drag 

increases rapidly with airspeed and is conceptually equivalent to the aerodynamic resistance found 

in ground vehicles.  

The power required to maintain steady level flight as a function of speed is the sum of the three 

drag components (Johnson, 2012): 

 

𝑝𝑙(𝑣) = 𝑘0 𝑣 + 𝑘𝑖  𝑣−1 + 𝑘𝑝 𝑣3  

 

where: 

𝑝𝑙(𝑣) =  power required for level flight as a function of speed [watts] 

𝑘0, 𝑘𝑖 , 𝑘𝑝 =  parameters associated to profile, induced, and parasite drag respectively   

 

The maximum range is obtained when drag is minimized and lift-to-drag ratio 𝜗(𝑣) is maximized 

(Johnson, 2012). Minimizing the drag forces utilizing the first order condition, the speed 𝑣𝑟  that 

maximizes the range is equal to: 

𝑣𝑟 = √
𝑘𝑖

𝑘𝑝

4

 

Hence, the optimal flying speed is dependent on aircraft size, aerodynamic and shape factors as 

well as environmental conditions that determine the relative value of the parameters 𝑘𝑖 and 𝑘𝑝 

(Johnson, 2012). 
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4.0 SURVEY DATA AND ANALYSIS 

Small drones are still a relatively new type of vehicle. Given the lack of available data regarding 

their characteristics and performance, a survey was carried out to fill this knowledge gap. The 

search was focused on UAVs small enough to be deployed for deliveries in dense urban areas (tare 

up to 15 kg and a potential payload of up to 15 kg).  

  

4.1 METHODOLOGY 

To obtain the data for the different UAV models, the researchers conducted an extensive internet 

search of UAV manufacturers and their products. They utilized information published on their 

websites, along with downloadable material such as user manuals, technical specifications, and 

press releases. Though most information was obtained this way, some specifications were procured 

through consumer tech reports or online retailers. In some cases, customer service was contacted 

to request additional information. 

Unfortunately, not all manufacturers posted all the relevant logistical data needed for a proper 

analysis. For instance, few manufacturers provided hovering times and most manufacturers did 

not provide detailed technical specifications regarding battery chargers or recharge times for the 

battery. In some cases, there was also a lack of detailed performance data that is useful for the 

freight industry, e.g. flight range with different levels of payload, or the number of cycles a battery 

can be recharged before replacement. The researchers analyzed data from the of UAVs included 

in Appendix A and that were available in the market at the time of the research. Due to incomplete 

data for some UAVs, graphs may have a different number of observations.   

The scope of the search was limited to multicopter drones that can potentially deliver in both urban 

and rural areas. Fixed-wing drones were excluded from the search because currently only copters 

have the capability of hovering and delivering products in tight spaces (required in urban areas); 

fixed-wing UAVs typically cannot land or take off vertically. Single copters can hover similarly 

to helicopters, but were not included in the search because these aircrafts tend to be larger, and the 

size of the propeller and blade made them unsafe for areas without a large clearance (more 

discussion about this issue in a later section). The search is also restricted to multicopters or multi-

rotor drones because this type of aircraft can hover but also has higher stability and 

maneuverability, which makes them more suitable for navigating tight spaces or flying near 

humans and/or valuable property. 

The UAVs studied in this report have a tare of 15 kg or less and a payload of 15 kg or less. Since 

the weight of the UAVs is capped, only drones with engines that are electric were included; noise 

and pollution problems are likely to hinder urban deployments of internal combustion engines. 

Internal combustion engines are mostly used in larger UAVs, and a later section discusses issues 

associated with size and noise limitations. 

Finally, this is a rapidly evolving and “young” industry without clear standards yet. Focusing only 

on electric multicopter drones allows for a more in-depth discussion of state-of-the-art drone 
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delivery capabilities. The lack of standardized data from manufactures provided a major challenge 

in terms of data presentation. Hence, instead of presenting data in tables that include each model, 

each topic is discussed in terms of observed trends, the typical value (median) and ranges found 

(25th and 75th intervals). 

4.2 SPEED, FLYING TIMES, RANGES AND PAYLOADS 

In shipping, speed is a key logistical consideration. The higher the speed, the faster the cargo can 

be delivered. Most speeds are in the range of 16 to 20 meters per second (35 to 45 miles per hour). 

The range of speeds is more than adequate for urban areas, considering that UAVs may travel more 

direct aerial routes and are not affected by ground road congestion. 

Most available flying times are in the range of 20 to 30 minutes. Flying times are mainly restricted 

by battery constraints. Flight range is heavily dependent on a multitude of factors, such as battery 

efficiency, battery size, payload size, weather, topography, and whether it is flown within line-of-

sight (LOS), autonomously, or remotely. Battery constraints and limited flying times determine 

that the typical range of current multicopters is between 15 and 35 km (roughly 10 and 22 miles). 

The practical range should be less than the maximum range stated by the manufacturer. In practice, 

the UAV operator has to provide a margin of safety, and some factors like headwinds can 

dramatically increase energy consumption. Hence, a drone with a stated maximum range of 35 km 

may only serve customers within less than a 14 km (8.7 mile) radius (assuming that it uses 80% of 

the theoretical range). 

Heavier payloads also reduce the range. For example, a drone may be able to fly 25 km with a 2 

kg payload, but only 20 km with a 3 kg payload. The maximum payloads surveyed ranged from 

1.8 kg to 6.4 kg (4 to 14 lbs). As a reference, Amazon’s future delivery service limits itself to 2.3 

kg or 5 pounds (Amazon, 2016). There is a clear trend linking the size and weight of the drone 

with its maximum payload capacity. As the drones increase in size and weight, there is also an 

increase in the amount they can lift. As later discussed, there is also a clear link between battery 

capacity, battery weight, and payload capacity. 

The practical range of drones will determine not only the service area of delivery but also the 

amount of infrastructure needed to serve an area or to achieve a particular level of service, e.g. 

Amazon’s 30 minute or less policy. A shorter range would require more closely spaced nodes at 

which drones could recharge, whether those were mobile vans, warehouses, or simply a charging 

station that is part of a charging network. 

4.3 SIZE AND WEIGHT 

In general, larger drones have a higher payload and heavier drones have a longer range (more and 

heavier batteries). The typical payload/takeoff-weight ratio ranges from 0.33 to 0.20, and the 

battery/takeoff-weight ratio typically ranges from 0.30 to 0.25. Heavier drones tend to be larger 

(longer diagonal measurement). The average size across the diagonal is 1,045 mm not including 

the propellers, with a typical range from 1485 to 350 mm. The typical takeoff weight is 

approximately 4 kg, but longer-range drones have a takeoff weight of 10 kg or more. 
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Figure 1 shows a clear positive relationship between the UAV tare and the diagonal length 

(excluding propellers) of the UAV frame. Figure 2  also shows a remarkably linear relationship 

between payload and takeoff weight. 

 

 

Figure 1: UAV Diagonal vs. Tare  

 

 
 

Figure 2: Max. Payload vs. Tare 
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4.4 BATTERY/ENERGY  

Batteries are primarily lithium based (also lithium polymer), though a few UAVs use lithium-ion 

batteries. Batteries are typically composed of several cells. Voltages are typically between 22.8 

and 11.4V. Battery energy typically ranges between 200 and 70 Wh, though some longer range 

drones like the Microdrone MD4-3000 can have a battery with over 750 Wh. 

Batteries are a major component of the weight of a drone. In small drones, the battery can be 

heavier than the maximum payload. In larger drones, the battery can weigh as much as 80% of the 

maximum payload. Battery technology is a key constraint for UAV performance; typical lithium-

based batteries used in available drones have an energy density ranging from 190 to 175 wh/kg. 

The consistency of ratios between tare, battery weight, and battery technology is confirmed by 

Figure 3, which shows a remarkably linear relationship between battery energy and tare. 

 

Figure 3: Battery Energy vs. Tare 
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but they also are a function of the recharger type. 
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4.5 PURCHASE COSTS 

There is a wide range of purchase costs; small multicopters cost a few hundred dollars and the 

most expensive multicopters cost over $20,000 each. The wide range is explained by the different 

capabilities and the cost of the batteries. In some cases, the batteries and the charger can be nearly 

as expensive as the cost of the drone itself (everything but the battery). 

UAV purchase cost values are somewhat hard to analyze because they change frequently, and also 

because many drones can be customized and different features may be added or removed (e.g. 

charger, additional batteries). In addition, some costs like shipping or taxes vary significantly by 

state or country. When many costs were available, purchase costs for standard UAVs (i.e. without 

additional features) were chosen for the analysis. 

Figure 4 shows another remarkably linear relationship, in this case between purchase cost and tare. 

Another linear trend is observed in Figure 5 between battery energy and purchase cost. These 

trends suggest that the unit cost per mass or energy density is relatively constant for the range of 

surveyed UAVs. Empty weight cost is a commonly used metric in the aviation industry because it 

tends to remain constant, even across different aircraft types (Valerdi, 2005). Hence, it is not 

surprising that it is also a useful metric for estimating UAVs purchase costs. 

 

 

Figure 4: Tare vs. Purchase Cost 
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Figure 5: Battery Energy vs. Purchase Cost 
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Figure 6: Flight time-tare vs. Cost 

 

The same relationship holds if the natural logarithm of costs and tare-flying time is plotted (see 

Figure 7). 

Valerdi (2005) also observed a linear relationship when plotting natural logarithms of costs and 
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Figure 7: ln(flight time-tare) vs. ln(cost) 

 

The scarcity of UAV performance data was also noted by Valerdi (2005): only seven observations 

were included in Valerdi’s graphs. 
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Figure 8: Battery Energy / Flight Time vs. Tare (linear relationship) 

 

The relationship can be linear but there are also theoretical reasons to think that it can be a power 

function of weight (see Figure 9). 

 

 

Figure 9: Battery Energy / Flight Time vs. Tare (power relationship) 
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The upper efficiency, in terms of energy consumed per distance traveled, can be estimated utilizing 

the battery energy and the maximum flying time and speed. The relationship between energy 

consumed per distance traveled and tare are shown in Figures 10 and 11 (linear and power 

relationship respectively).  

 
 

Figure 10: Energy / Distance vs. Tare (linear relationship) 

 

Figure 11: Battery Energy / Flight Time vs. Tare (power relationship) 
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The previous graphs, Figures 8, 9, 10 and 11, imply economies of scale regarding energy consumed 

per unit of mass flown or distance traveled.   

4.8 OPERATIONAL LIMITATIONS 

Most drones can operate with headwinds of less than 10 meters per second, though larger drones 

are less susceptible to adverse weather conditions. Hence, many drones cannot be reliably 

deployed in windy areas due to either potentially limited service times or a reduction in flying 

range caused by strong headwinds. 

The operating temperature ranges typically between -10° C and 45° C; hence, drones cannot be 

deployed in extremely hot or cold areas. Finally, remote controlled maximum transmission 

distance is typically far less than the maximum flying range, though this limitation can be 

overcome by designing UAVs with more expensive sensors and communication devices. 

 

4.9 SUMMARY  

This section highlights some important trends, mostly linear, among UAV tare, payloads, battery 

energy, purchase costs, and energy consumption per unit of time flown. Though the trends are 

intuitive, the reader is reminded that they are drawn from a relatively small set of observations, 

that manufactures information is difficult to compare, and that UAVs are evolving rapidly. 

According to FAA (2016) rules, drones must not be flown over populated areas, less than 400’ 

from any structure, when visibility is a less than three miles and when there is reduced daytime 

visibility. These restrictions allow freight to be delivered in rural environments over short distances 

and on very clear days. Most of the surveyed multicopter drones’ basic capabilities, e.g. speed, 

altitude, and payload, do not violate FAA’s restrictions. However, restrictions governing where 

and what the drone can fly over, how it can be piloted (beyond line of sight or autonomously), and 

how far it can fly from its origin may severely limit UAVs’ business and geographical scope. 
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5.0 ECONOMIC ANALYSIS 

This section focuses on the economic analysis of UAVs. Most airplane costs are proportional to 

the hours flown, and costs are linear in time (Swan and Adler, 2006). Assuming a constant 

operating speed, time costs are also proportional to distance. In addition, non-time costs are also 

commonly proportional to departure cycles and kilometers (Swan and Adler, 2006). The cost per 

hour flown or cost per flying hour is also a basic metric to understand and measure aircraft costs 

for military aircrafts (Laubacher, 2004). 

For civilian aircrafts, typically, the analysis is also done at the seat-hour level. In this research, the 

costs of UAVs will be analyzed as a function of costs per flying hour (CPFH). 

5.1  COST ASSUMPTIONS  

The cost of operating commercial aircrafts can be broken down into two main categories: airborne 

cost and ground costs. UAVs’ airbone costs include energy and UAV/battery depreciation plus 

operator cost per hour. Ground costs include maintenance plus ancillary staff, services, and 

facilities. 

5.1.1 UAV Operation Staff Costs  

Many uncertainties exist in quantifying the number of staff per UAV and labor cost variables. 

Labor costs should include not only wages but also fringe benefits, training costs, and employee 

turnover. Regulation may play a crucial role; relaxing line of sight operation rules may increase 

UAV operator productivity, i.e. being able to control and monitor two or more UAVs 

simultaneously. Based on salaries paid in the trucking industry, a $40 per hour total cost per UAV 

operator seems reasonable. However, it is important to highlight that staff costs will include not 

only operators but also support staff such as maintenance technicians, customer service, 

administration, security, etc. 

 

5.1.2 Maintenance costs 

Specialized staff for routine maintenance or for diagnosing problems and repairing or replacing 

parts will be required. In the aviation industry, many routine monitoring and maintenance costs 

are related to hours of operation or flying hours. Compensation for aircraft mechanics can be $80 

per hour and electronics technicians $90 per hour or more (Perritt and Sprague, 2016). 

5.1.3 Other Ground Costs 

Other ground costs include UAV storage, facilities, and ancillary services. This tend to be fixed 

costs and harder to incorporate into CPFH estimations without major assumptions regarding 

business economies of scale and productivity. 
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5.1.4 Energy Costs  

UAVs analyzed in this research have electric propulsion systems, and based on their size, it is 

possible to have good estimations of energy consumption and electricity costs per hour flown. 

Combining the average price of a kilowatt-hour and the energy consumption (see Survey 

chapter) of a UAV, it is possible to estimate an electricity cost of approximately $0.15 per hour. 

 

5.1.5 Purchase Cost and Economic Life  

The purchase cost of a UAV is related to its size and tare (see Survey chapter). The economic life 

of UAVs is uncertain. Scarce data is available from which to estimate the economic life of a small 

UAV, but it is likely that one year and no residual value are reasonable assumptions (Perritt and 

Sprague, 2016). 

Another significant cost element is related to battery cost and life. There is a linear relationship 

between battery energy and its cost. In addition, batteries have a life that is related to 

charging/discharging cycles, with approximately 500 cycles before replacement. 

5.1.6 Software and Communications Cost 

If UAVs do not operate within line of sight of the operator, more sophisticated software, sensors, 

data processing chips, and communication devices are required to detect and avoid potential 

collisions and problems. 

5.1.7 Productivity  

The UAV productivity measured as the number of deliveries per hour will depend on many factors. 

Simplifying assumptions are necessary to develop values for UAVs CPFH: 

- Highest UAV productivity is achieved by continuous flying, though in the real world there are 

also setup times related to takeoff, drop-off, swapping batteries, and reloading the UAV with 

a new shipment. A six minute setup time per delivery is assumed in the CPFH values presented 

in this chapter. 

- From the UAV survey data chapter, typical UAV range and operating speeds are drawn. Drone 

purchase costs and battery size are estimated based on a UAV range of 30 km. A circular 

service region and homogenous demand distribution is also assumed. An average of 1000 

deliveries per square-kilometer per year is assumed. 

- It is important to consider that UAVs may not be able to operate with adverse weather 

conditions or at night (due to noise regulations, for example). In addition, demand is likely to 

have highs and lows, which reduces potential utilization. Accounting for all the mentioned 

limitations and for periods of high and low demand, an average of 55.6 deliveries per drone-

week are assumed. 
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5.2 CPFH ESTIMATIONS 

Based on the previous assumptions, it is possible to estimate UAV CPFH. The preliminary 

estimations show that energy costs are almost negligible. UAV and battery costs are significant, 

but the largest item is staff costs. Two scenarios are chosen to illustrate the relative weight of staff 

costs. 

In the first scenario, an ideal scenario where regulation allows for beyond line of sight control, one 

staff member can control 10 UAVs simultaneously. This figure includes UAV operators and also 

support staff such as technicians, customer service, support staff, etc. The figures contained in 

Table 1 show that even in this optimistic scenario, staff costs account for more than 1/3 of the 

CPFH. 

In the pessimistic scenario where regulation does not allow for beyond line of sight control, one 

staff member can control 0.9 UAVs simultaneously. This figure must be less than one because it 

includes one UAV operator per flying UAV and also support staff such as technicians, customer 

service, etc. The cost figures included in Table 2. This figure indicate that staff costs can account 

for a CPFH share of 85% or more. 

 

 Table 1: CPFH – Assuming 10 UAVs per staff 

Cost Item Cost  Percentage 

Drone  $/hr         5.57  37.2% 

Battery  $/hr         4.06  27.1% 

Energy  $/hr         0.15  1.0% 

Staff  $/hr         5.21  34.8% 

TOTAL  $/hr       14.98  100.0% 

 

Table 2: CPFH – Assuming 0.9 UAVs per staff 

Cost Item Cost  Percentage 

Drone  $/hr         5.57  8.2% 

Battery  $/hr         4.06  6.0% 

Energy  $/hr         0.15  0.2% 

Staff  $/hr       57.87  85.6% 

TOTAL  $/hr       67.64  100.0% 
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5.3 SUMMARY  

This section focused on the economic analysis of UAVs, and key insights include the high impact 

of labor/staff costs. Regulation regarding staff needed per UAV-hour is likely to play a sizable 

role, and therefore there is large amount of variability in the figures provided. 

Cost metrics such as cost per flying hour (CPFH) are the most relevant for small UAVs since they 

readily take into account the impact of operator labor cost and utilization, clearly the largest cost 

components. Other researchers have also concluded that UAV staff costs are likely to be more 

economically significant than other costs at any reasonable level of utilization (Perritt and Sprague, 

2016). 
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6.0 MODELING ENERGY CONSUMPTION 

This sections deals with the estimation of UAV energy consumption. Two basic scenarios are 

analyzed; first, a one-to-one scenario where a vehicle travels to a destination and drops its load 

and then returns empty to its depot, and later, a one-to-many scenario where a vehicle delivers to 

multiple destinations before returning empty to its depot. 

  

6.1 ONE-TO-ONE ENERGY CONSUMPTION  

In this scenario, a vehicle (UAV or van) travels to a destination and drops its load and then returns 

empty. By reversing the order, it is possible to model a pick up. Without loss of generality, drop-

off services will be assumed herein. Due to noise and pollution concerns, it will also be assumed 

that electric UAVs are utilized for urban services (internal combustion engines pollute more and 

are noisier). Only one vehicle is utilized, i.e. there is no load transfer or intermediate depots. 

Utilizing the equations derived in Section 3, the energy consumed by a UAV to reach a customer 

and travel back empty is: 

 

(𝑚𝑡 + 𝑚𝑏 +  𝑚𝑙 )𝑔

𝜗(𝑠)𝜂𝑝
 𝑑 +

(𝑚𝑡 + 𝑚𝑏 )𝑔

𝜗(𝑠)𝜂𝑝
 𝑑 

 

This expression can be simplified utilizing 𝑐𝑚 the ratio between the tare and the gross vehicle 

weight of the UAV, i.e. the ratio between the weight of the unloaded UAV and the weight of the 

fully loaded UAV. In the case of electrical batteries, the weight of the battery does not change as 

a function of distance traveled. However, when batteries are charged, there are losses that are 

captured by the recharging efficiency. The total energy consumed to serve one customer is: 

 

𝐸1
𝑢= 

𝑔𝑑

𝜗(𝑠) 𝜂𝑝𝜂𝑟
(𝑚𝑡 +  𝑚𝑏 +  𝑚𝑙  ) + (𝑚𝑡 +  𝑚𝑏) = 

𝑔𝑑𝑚

𝜗(𝑠)𝜂𝑝𝜂𝑟
(1 +  𝑐𝑚 )    

 

where: 

𝐸1
𝑢= UAV energy necessary to serve one customer [joules] 

𝑐𝑚 = empty weight fraction [unit-less], 𝑐𝑚 = 
(𝑚𝑡+ 𝑚𝑏 )

(𝑚𝑡+ 𝑚𝑏+ 𝑚𝑙 )
< 1  

𝜂𝑟 = battery recharging efficiency [unit-less]. 
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The energy necessary to serve one customer utilizing a conventional vehicle can be expressed as: 

 

𝐸1
𝑐 = 2𝑘𝑐𝑑 𝑓𝑒𝑐𝑓 

 

where:  

𝐸1
𝑐= conventional vehicle energy necessary to serve one customer [joules] 

𝑓𝑐 = fuel consumption [liters/100 km] 

𝑐𝑓 = conversion fuel energy factor [J/liter] 

𝑘𝑐 = depot-customer distance circuitous factor relative to the UAV[unit-less]. 

 

In this research, it is assumed that 𝑘𝑐 = 1.0 unless stated otherwise. The energy needed per unit 

distance traveled can be obtained by dividing the previous expressions by 2𝑑 . The result is 

respectively: 

 

𝑒1
𝑢=  

𝑔𝑚

𝜗(𝑠)𝜂𝑝𝜂𝑟

1+ 𝑐𝑚

2
  

𝑒1
𝑐 = 𝑘𝑐 𝑓𝑒𝑐𝑓 

 

where: 

𝑒1
𝑢= UAV energy necessary to serve one customer per unit of distance traveled [joules/meter] 

𝑒1
𝑐= Commercial vehicle energy necessary to serve one customer per unit of distance traveled 

[joules/meter]. 

 

To quantify the energy efficiency of UAVs, the ratio of latter two expressions can be estimated as 

follows: 
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𝜌1
𝑒𝑛 =

2𝑘𝑐  𝑐𝑓𝑓𝑐 𝜗(𝑠) 𝜂𝑝𝜂𝑟

𝑔𝑚(1 +  𝑐𝑚 )
 

 

where: 

𝜌1
𝑒𝑛 = relative energy efficiency of UAVs when serving one (1) customer (one-to-one service). 

It can be observed from this last equation that distance to the customer drops out from the 

expression. As expected, the relative efficiency of UAVs increases as the mass of the UAV 

decreases when the cargo has a higher share of the total UAV mass, and when the UAV power 

delivery and battery recharging efficiencies increase. The relative efficiency of the UAV decreases 

when the fuel consumption of the conventional vehicle decreases. 

 

6.2 RESULTS FOR ONE-TO-ONE ROUTES 

This section applies the formulas developed in the previous section to compare the energy 

efficiency of a typical U.S. conventional cargo van and a mainstream UAV, assuming one-to-one 

deliveries (one customer per route). Table 1 shows the relevant aircraft and vehicle characteristics. 

Data for the cargo van was obtained from Saenz et al. (2016) and data for the MD4-3000 UAV 

was obtained from the manufacturer’s website (MicroDrones, 2016). 

Table 3: Vehicle characteristics and emissions parameters 

 UAV Diesel cargo van 

Specification MD4-3000 RAM ProMaster 2500 

Take off / Gross weight 𝑚 15.1 kg 4060 kg 

Tare / Curb Weight 𝑚𝑡 10.1 kg 2170 kg 

Payload 𝑚𝑙 5.0 kg 1890 kg 

Empty weight factor 𝑐𝑚 0.67 0.53 

Battery/Fuel Storage Capacity* 777 wh 8.63 kWh 

𝑒𝑔𝑡𝑏 or 𝑒𝑤𝑡𝑡 1.235 lbs CO2e / kWh 5.108 lbs CO2e / gallon 

𝑒𝑏𝑡𝑝 or 𝑒𝑡𝑡𝑤 -  22.72 lbs CO2e / gallon 

Range 36 km   695 km  

Energy/fuel consumption  21.6 wh/km* 1016 wh/km* 
 

* Calculated utilizing manufacturer information. It was assumed that the energy content of gasoil 

is 34200 kJ/liter and therefore 22 mpg = 1016 wh/km. To improve readability, numbers have 

been rounded. 
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The MD4-3000 is a state-of-the-art UAV that can be used to carry objects or for aerial 

photography/filming purposes. The manufacturer’s website contains all the data necessary to 

estimate energy consumption for a given load. The MD4-3000 capabilities seem similar to the 

HorseFly UAV tested by UPS in February 2017. The battery-powered HorseFly drone recharges 

while docked in the UPS van, has a 30-minute flight time, and can carry a package weighing up to 

4.5 kg (HorseFly, 2017). 

When comparing the aircraft and the vehicle, there is a large difference in vehicle mass, carrying 

capacity, engine power, and energy stored. The application of the formulas developed in the 

previous sections generate the numbers contained in Table 4. Assuming a payload of 5.0 kg, the 

UAV is almost 47 times more efficient (𝜌1
𝑒𝑛 = 47) than the van in terms of energy consumed per 

unit distance. The same energy is consumed if the van travels one time and delivers 47 packages 

at once (assuming UAV utilizes 21.6 wh/km) or if the UAV travels back and forth 47 times and 

delivers one package at the time. 

What is generating this 𝜌1
𝑒𝑛 = 47 value? It is possible to disaggregate 𝜌1

𝑒𝑛, i.e. expression (6), into 

two components, assuming that 𝑘𝑐 = 1: 

 

1 <
2 

(1+ 𝑐𝑚 )
< 2 [unit-less] 

 

𝑐𝑓𝑓𝑐 

𝑔𝑚/ (𝜗(𝑠) 𝜂𝑝𝜂𝑟)
   [unit-less] 

 

The first term is bounded in the interval (1, 2) and is a function of the relative mass size of the load 

with respect to the total UAV mass and approximately equal to 1.2 in the case study. The second 

term is approximately 39 and accounts for the large difference in energy consumption between the 

conventional vehicle and the UAV. This term can be interpreted as the ratio between the energy 

necessary to move (per unit distance) the van and the energy necessary to move (per unit distance) 

a mass equivalent to the UAV mass. 

There is a significant mass difference between the van and the UAV, but electric engines also 

produce simpler and more efficient machines. The product  𝜂𝑝𝜂𝑟 is the overall efficiency to deliver 

power to the battery and then to the propellers and is assumed to be (0.90)(0.73) =  0.66; in 

comparison, typical diesel vehicles may utilize 25% of the potential energy stored in the fuel to 

move the vehicle (most of the energy contained in diesel fuel is dissipated as heat). 

6.3 MODELING ONE-TO-MANY ROUTES 

This section presents the analytical framework to analyze the efficiency of ground vehicles when 

several costumers can be grouped in a route (one-to-many configuration). In this scenario, there 
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are two or more customers per route served by the same ground vehicle (one ground vehicle and 

many stops or customers per route). 

The ground delivery vehicle can combine customers in one route; however, the UAV cannot do 

multiple drops without first returning to the depot to reload. The UAV travels to a destination, 

drops its load, and then returns empty to the launching location, where a new package is loaded, 

and so on (still one-to-one service for UAVs). For the sake of simplicity, it is assumed that there 

are 𝑛 customers that are delivered the type of same package (weight). 

Assuming that a UAV can serve only one customer at a time due to volume and/or weight 

limitations, the energy necessary to serve 𝑛 customers by a UAV is: 

 

𝐸𝑛
𝑢=  

𝑛 𝑔𝑟𝑚

𝜂𝑝𝜂𝑎𝜗(𝑠)
(1 +  𝑐𝑚 ) 

 

where: 

𝐸𝑛
𝑢= UAV energy necessary to serve 𝑛 customers [joules]. 

 

Conventional vehicles’ typical delivery (or pick-up) routes serve many customers. Continuous 

approximation models can be utilized to model the average distance traveled to serve 𝑛 customers 

(Daganzo, 2005). A continuous approximation formula, empirically validated, that is appropriate 

for customer delivery areas located away from the depot is the following (Figliozzi, 2008): 

   

𝑑𝑛 = 2𝑘𝑐�̅�  + 𝑘𝑙√𝑛𝐴 

where: 

𝑑𝑛 = average distance traveled to serve 𝑛 customers by one vehicle [km]  

�̅�  = average distance between customers and the depot [km] 

𝑛 = number of stops or deliveries [unit-less]  

𝐴 = size of service area containing 𝑛 customers [km2] 

𝑘𝑙 = local customer distribution distance circuitous factor [unit-less].  

 

Then, the energy necessary to serve 𝑛 customers utilizing 𝑣 conventional vehicles is:  
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𝐸𝑛
𝑐= 𝑐𝑓𝑓𝑐[2𝑘𝑐�̅�  + 𝑘𝑙√𝑛𝐴] 

 

The ratio of expressions 𝐸𝑛
𝑐 and 𝐸𝑛

𝑢 can be estimated as follows: 

 

𝜌𝑛
𝑒𝑛 =

𝑐𝑓𝑓𝑐[2𝑘𝑐�̅� +𝑘𝑙√𝑛𝐴] 𝜗(𝑠) 𝜂𝑝𝜂𝑟

𝑛�̅�  𝑔𝑚(1+ 𝑐𝑚 )
  

 

where 𝜌𝑛
𝑒𝑛 is the relative energy efficiency of UAVs when one ground vehicle serves 𝑛 customers 

per route (one-to-many service). As previously demonstrated, it is possible to disaggregate the last 

equation into the following unit-less components: 

 

0 <
1

(1+ 𝑐𝑚 )
< 1    [unit-less] 

 

0 < 𝜂𝑝𝜂𝑟 < 1   [unit-less] 

 

𝑐𝑓𝑓𝑐 

𝑔𝑚/ 𝜗(𝑠)
    [unit-less] 

 

2𝑘𝑐�̅� +𝑘𝑙√𝑛𝐴

𝑛�̅� 
   [unit-less] 

 

Distance traveled increases linearly with the number of customers for the UAV but at a lower rate 

for the conventional vehicle. This is reflected in the last expression that is the ratio between 

conventional vehicle distance and UAV distance; as 𝑛 increases, the relative efficiency of the 

UAV decreases continuously. Hence, there is a breakeven point for a large enough 𝑛. 

6.4 RESULTS FOR ONE-TO-MANY ROUTES 

This section utilizes the same vehicle and UAV already described in the one-to-one case study. 

Average travel distances and distribution areas that are approximately binding the UAV 25 km 

range constraint are utilized in this section; the reader should know that this is the most favorable 
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scenario for UAVs. A 25 km distance is approximately 70% of the maximum UAV theoretical 

range. In practice, the UAV operator has to provide a margin of safety and account for unknown 

factors that can increase energy consumption, such as headwinds. 

When assuming a constant and binding UAV range, average distances between depot to customers 

and service areas are negatively correlated (see Table 4). In Table 4, the value 𝑛∗ is the breakeven 

point, or the number of customers that equalizes the efficiency of a UAV and a conventional 

vehicle. There are three columns under 𝑛∗. The central column under 21.6 wh/km contains the 

breakeven point based on the efficiency estimated from the UAV manufacturer specifications. The 

left column under 10.8 wh/km contains breakeven points based on the efficiency of a future UAV 

whose efficiency has doubled. The right column under 32.4 wh/km contains breakeven points for 

a MD4-3000 UAV whose efficiency has decreased by 50%. This low efficiency is not unrealistic 

under adverse conditions that include more headwinds, hovering time, or maneuvering 

up/down/sideways to avoid obstacles, reach the destination, or complete the delivery. 

 

Table 4: UAV and Diesel Van Breakeven Energy Scenarios - One-to-one Routes 

Avg. Dist. depot 

to 

Customers (km) 

Service 

 Area (km2) 

𝒏∗ 

𝜌1
𝑒𝑛~94 

10.8 

wh/km 

𝜌1
𝑒𝑛~47 

21.6 

wh/km 

𝜌1
𝑒𝑛~31 

32.4 

wh/km 

8 60  1,340   362  173 

9 40 785  224  113 

10 20 413  131  72 

11 7 219   83  50 

12 1 127   58  37 

 

The figures in Table 4 show a positive correlation between service area size and breakeven number 

of customers, and a negative correlation between depot distance and breakeven number of 

customers. As a reference, a typical UPS delivery truck in a dense urban area can deliver 200 to 

300 pieces and packages. In some cases where there are multiple deliveries of pieces/packages at 

the same address—e.g. a large office complex—the number can go up to 300 to 500 pieces. Under 

adverse delivery conditions, that UAV is not competitive if the truck can deliver more than 50 

packages in a dense area. 
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7.0 MODELING CO2 EMISSIONS 

This sections deals with the estimation of UAV emissions. Leveraging the results of the previous 

section, two scenarios are analyzed. First, a one-to-one scenario where a vehicle travels to a 

destination and drops its load and then returns empty to its depot, and later, a one-to-many scenario 

where a vehicle delivers to multiple destinations before returning empty to its depot. 

7.1 CO2E EMISSIONS 

For conventional vehicles, the carbon footprint of the vehicle utilization phase includes well-to-

tank (WTT)—emissions that take place along the fuel/energy supply chain—and tank-to-wheel 

(TTW)—emissions associated with the combustion of the fuel. For a UAV, the carbon footprint 

includes generation-to-battery (GTB) emissions associated with the electricity supply chain and 

battery-to-propeller (BTP) emissions. For electric UAVs, the BTP component is zero. 

WTT emissions for fossil fuels include several stages: petroleum pumping, extracting, 

transporting, refining in factories, distributing, and dispensing to the vehicles. WTT emissions are 

estimated using the GREET model (USDoE, 2016); 5.1 lbs CO2e/gallon of diesel or 0.22 kg 

CO2e/liter of diesel. The TTW emissions associated with burning one gallon of diesel is 

approximately 22.7 lbs CO2e/gallon of diesel or 2.7 kg CO2e/liter of diesel (USEPA, 2017). The 

Emissions & Generation Resource Integrated Database (eGRID), published by the U.S. 

Environmental Protection Agency, is utilized to estimate GTB emissions (USEPA, 2016). The 

eGRID values include the generation of electricity at the power plants, as well as electricity 

transmission and distribution losses. The operational GHG emissions per mile are calculated for 

each vehicle using the following expressions for UAVs and diesel vehicles, respectively. 

 

𝑐𝑜2𝑒𝑢  
𝐸𝑛

𝑢 𝑓  𝑒𝑔𝑡𝑏

2 𝑟𝑛 
 =  

𝑔𝑚

𝜂𝑝𝜂𝑚𝜂𝑎𝜗(𝑠)
 
(1+ 𝑐𝑚 )

2
 𝑓𝑘𝑤ℎ 𝑒𝑔𝑡𝑏   

 𝑐𝑜2𝑒𝑐 = 100 𝑓𝑐  (𝑒𝑤𝑡𝑡 + 𝑒𝑡𝑡𝑤)  

 

where: 

𝑐𝑜2𝑒𝑢 = UAV equivalent carbon dioxide emissions per unit of distance traveled [kg.CO2e/km] 

𝑐𝑜2𝑒𝑐 = van equivalent carbon dioxide emissions per unit of distance traveled [kg.CO2e/km] 

𝑓𝑘𝑤ℎ  =  factor to convert Joules to kWh = 1 / 3.6 106 [ kWh / Joule] 

𝑒𝑔𝑡𝑏
𝑖 =  emissions of the GTB phase [ kg.CO2e / kWh)] 

𝑒𝑤𝑡𝑡
𝑖 =  emissions of the WTT phase [ kg.CO2e / liter)] 
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𝑒𝑡𝑡𝑤
𝑖 =  emissions of the TTW phase [ kg.CO2e / liter)]. 

 

The ratio of the last two equations is 𝜌1
𝑒𝑚 or the relative emissions efficiency per unit distance of 

UAVs with respect to ground vehicles. If the last two equations are divided by payload, it is 

possible to estimate the efficiency per unit of distance and payload. 

7.2 RESULTS FOR ONE-TO-ONE ROUTES 

If the analysis is conducted in terms of emissions per unit distance, the advantage of the UAV is 

even higher because electricity generation is “greener” per unit of energy than diesel fuel. The 

electricity consumed for the UAV is more than 22 times cleaner than the energy consumed by the 

van, and the ratio between van and UAV CO2e emissions per unit distance is 𝜌1,1
𝑒𝑚 = 1,056. 

Table 5: One-to-one service performance measures 

Performance Measure Unit* 
Van 

(1) 

UAV 

(2) 

Ratio 

(1)/(2) 

Energy consumed per unit distance wh/km 1,016  21.6 47 

Emissions per unit energy consumed gCo2e/wh 12.6 0.6 22.5 

Emissions per unit distance kgCO2e/km 12.83 0.012 1,056 

Payload kg 1,890 5.0 378 

Energy cons. per unit distance-load wh/km-kg 0.54 4.32 0.12 

Emissions per unit distance-load kgCO2e/km-kg 6.79 2.42 2.8 

To improve readability, numbers have been rounded. 

 

The performance measures are more favorable for the conventional van when the analysis is done 

in terms of energy consumption and emissions per unit distance and per kilogram of payload 

delivered. The van can deliver 378 times more cargo than the UAV; assuming maximum payloads, 

the van is eight times (1/0.12) more efficient in terms of energy consumption but still almost 2.8 

times less efficient regarding GHG emissions. 

7.3 RESULTS FOR ONE-TO-MANY ROUTES 

This subsection utilizes the same vehicle and UAV already described in the one-to-one case study. 

Average travel distances and distribution areas approximately binding the UAV 25 km range 

constraint are utilized in this section; the reader should note that this is the most favorable scenario 

for UAVs. A 25 km distance is approximately 70% of the maximum UAV theoretical range. In 

practice, the UAV operator has to provide a margin of safety and account for unknown factors that 

can increase energy consumption, such as headwinds.  

In terms of emissions, given that 𝜌1
𝑒𝑚 = 1056 is so high, in practice, it is difficult to find delivery 

routes where the van is more efficient than an electric UAV in terms of operational emissions. The 

same emissions are generated if the van travels one time and delivers 1056 packages at once or if 

the UAV travels back and forth 1056 times and delivers one package at the time. 
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An electric truck will be more competitive in terms of energy and emissions. When comparing an 

electric truck and UAV, the relative efficiencies in terms of energy and emissions are the same, 

i.e. 𝜌1
𝑒𝑛 = 𝜌1

𝑒𝑚, because the same energy source is utilized to power the electric engines. Assuming 

that the electric truck has an energy consumption of 760 wh/km (Davis and Figliozzi 2013; Feng 

and Figliozzi, 2013), then 𝜌1
𝑒𝑛 = 𝜌1

𝑒𝑚 = 35. Table 4 shows the results assuming that one electric 

truck serves the one-to-many route. There is a noticeable decrease in the values of 𝑛∗ and electric 

trucks can now compete with UAVs in terms of both energy and emissions efficiency in realistic 

routes with more than 50 customers and/or a relatively small delivery area. 

Electric vehicles have steadily become more efficient in the last five years. Small electric vans are 

also now in the market (mainly in Europe). For example, the 2017 Renault ZE Kangoo has a 

payload of 600 kg and will consume approximately 205 wh/km in temperate temperatures 

(Renault, 2017). The 205 wh/km value used in Table 6 is more conservative than the ideal value 

given by the manufacturer (150 wh/km). Against an electric van that can carry 120 times more 

cargo, the UAV is not competitive in dense delivery areas with more than 10 customers per route, 

as shown in Table 6, right column. 

Table 6: UAV and Electric Van Breakeven Scenarios – One-to-one Routes  

Avg. Dist. depot 

to 

Customers (km) 

Service 

 Area (km2) 

𝒏∗ 

𝝆𝟏
𝒆𝒏~𝟑𝟓  

vs. E-truck 

𝒏∗ 

𝝆𝟏
𝒆𝒏~𝟗. 𝟓 

vs. E-van 

8 60  214                26  

9 40  137                20  

10 20   85                15  

11 7   58                12  

12 1   42                10  

 

An electric tricycle is even more efficient than an electric truck or van in terms of energy 

consumption and emissions. According Saenz et al. (2016), the real-world energy consumption of 

a delivery tricycle is approximately 48.65 wh/mile or 30.24 wh/km. With this value, the relative 

efficiency between an UAV and an electric tricycle is 𝜌1
𝑒𝑛 = 𝜌1

𝑒𝑚 = 1.4. When the number of 

customers per route is relatively small (𝑛 < 10), the following expression (Figliozzi, 2008) is a 

better approximation for the VRP distance (used for the tricycle case): 

𝑑𝑛 = 2𝑘𝑐�̅�  + 𝑘𝑙   (
𝑛 − 𝑚

𝑛
) √𝑛𝐴 

Table 7 shows the results assuming one electric tricycle serves the one-to-many route. There is a 

sharp decrease in the values of customers needed to breakeven; tricycles outcompete UAVs in 

terms of efficiency when two or more customers can be grouped in a route. In Table 7, the values 

of 𝑛∗ are so small that decimals are necessary to show changes. Against an electric tricycle that 

can carry 40 times more cargo, the UAV is not competitive in routes where it is possible to group 

two or more customers. 
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Table 7: UAV and Electric Tricycle Breakeven Scenarios – One-to-one Routes 

Avg. Dist. depot 

to 

Customers (km) 

Service 

 Area (km2) 

𝒏∗ 

𝝆𝟏
𝒆𝒏~𝟏. 𝟒  

vs. E-tricycle 

8 60  2.1  

9 40  1.9  

10 20  1.7  

11 7  1.6  

12 1 1.5 

 

 

The competitiveness of ground vehicles is even higher if vehicle phase emissions are also taken 

into account, as discussed in the next section. 

7.4 MODELING VEHICLE PHASE CO2E EMISSIONS 

The focus of this section is on emissions tradeoffs between UAVs and different types of ground 

delivery vehicles. It has been correctly argued that the analysis of transportation systems energy 

and emissions levels should include not only direct tailpipe emissions but also emissions associated 

with vehicle production and disposal, the fuel/energy source, and required transportation 

infrastructure (Chester and Horvath, 2009). Lifecycle assessment (LCA) of vehicle emissions 

provides a more comprehensive view of transportation emissions than the traditional approach 

based on tailpipe emissions. 

LCA separates emissions along life cycles or phases: extraction of raw materials from the earth, 

materials processing, manufacturing, distribution, product use and disposal or recycling at the end. 

We compare last-mile UAVs’ and ground vehicles’ lifecycle CO2e emissions in two distinct 

phases: (a) vehicle utilization and (b) vehicle production/disposal. In this research, ground vehicle 

emissions associated with utilization includes well-to-tank (WTT)—the lifecycle of fuel 

production and distribution—and tank-to-wheel (TTW) or direct tailpipe emissions. These 

concepts are extended for the aerial vehicle or aircraft with an electric engine; for the UAV, WTT 

emissions are replaced by generation-to-battery (GTB) and TTW emissions are replaced by 

battery-to-propeller (BTP) emissions. The vehicle phase (b) includes emissions from materials 

extraction and processing, manufacturing, distribution, and vehicle disposal or recycling, but 

without considering vehicle utilization. 

In the previous subsections, a detailed analysis of operating emissions was presented, including 

both WTT and TTW CO2e emissions for ground vehicles and GTB and BTP CO2e emissions for 

UAVs. This subsection focuses solely on the vehicle production and disposal phase. The vehicle 

phase includes emissions associated with the extraction of raw materials from the earth, raw 

materials processing, manufacturing, distribution, and disposal or recycling at the end. 

GHG emissions for the vehicle phase are estimated using the GREET model, which uses vehicle 

weight as the functional unit (USDOE, 2016). The GREET model contains hundreds of parameters 

with default values based on national/regional statics or industrial practice. Detailed 
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documentation of assumptions in relation to industrial processes and technologies are available on 

GREET publications (USDOE, 2016). For diesel vans and electric tricycles, the same values 

utilized in previous research efforts are employed. Regarding UAVs, the GREET model does not 

include a UAV vehicle type. Unlike other flying machines, a major component of the UAV weight 

is the lithium-ion polymer battery. Hence, the electric UAV was modeled as the sum of two 

elements: (a) the lithium-ion batteries, and (b) the rest of the UAV (engines, sensors/processors, 

and the body/frame). Battery lifecycle values were obtained from the paper by Kim et al. (2016) 

that analyzed electric vehicles’ lithium-ion batteries. 

7.4.1 CO2e for Production and Disposal  

The results of the analysis are shown in Table 8. The UAV has a much smaller mass and lower 

vehicle phase emissions per vehicle, but the battery is 40% of its tare. Due to the long recharge 

time, it is common to have three or more batteries per UAV. Conservatively, only four batteries 

over the lifetime of the drone are assumed; this is a conservative estimate because a properly 

maintained lithium-ion polymer battery has less than 1000 recharge cycles on average (Peters et 

al., 2017). In addition, in proportion to its weight, the UAV has more processors, sensors, 

electronics, and other aircraft materials that are more energy intensive to produce and recycle; 

hence, the UAV has a significantly higher rate of CO2e emissions per vehicle mass and per payload 

mass—see rows three and four of Table 8. 

 

Table 8: Vehicle Phase CO2e Emissions 

Parameter UAV Tricycle Diesel Van 

Batteries (kg CO2e) 435 306 (*) 

Vehicle (kg CO2e)  56  346  10,076 

Emissions per unit of vehicle mass     

or tare (kg CO2e per kg)  48.6   8.7   4.6 

Emissions per unit of payload mass     

(kg CO2e per kg)  69.2   2.6   5.3  

 (*) Included in the vehicle chassis. To improve readability, numbers have been rounded. 
 

To estimate the UAV vehicle phase emissions, the following formula was utilized: 

𝑛𝑏 𝑤𝑏 𝑒𝑏 + 𝑚𝑡 𝑒𝑡  

 

where: 

𝑛𝑏:  number of batteries utilized during the UAV lifetime 
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𝑒𝑏:  emissions per kwh (140 kg CO2e per kwh battery)  

𝑤𝑏: battery storage capacity (777 wh) 

𝑒𝑡:  emissions per vehicle tare weight (9.3 kg CO2e per kg). 

 

To compare vehicle phase emissions with utilization emissions, it is necessary to estimate vehicle 

phase emissions per delivery, assuming values for the average number of deliveries per day, 

number of vehicle working days per year, and vehicle productive life. It was already mentioned 

that in an urban area, a parcel delivery van can easily deliver 150 or more parcels per day; the van 

assumed in this research can carry up to 375 packages if each package weighs 5 kg. A tricycle is 

more limited in terms of operating speed and capacity, and the number of deliveries per day is 

around 25 stops or customers per day (Saenz et al. 2016), but it can carry up to 54 packages if each 

package weighs 5 kg. It is assumed that on average, four deliveries per day are made by the UAV. 

Three years may be considered an optimistic guess given that UAV multicopters is a very young 

technology. Unfortunately, there is no available data regarding UAV life and average deliveries 

per day, but these numbers can be easily updated when data become available. The total number 

of deliveries over the lifetime of a vehicle is simply the product of working life duration (years) 

by service days per year (days/year) and by average deliveries per day (deliveries/day). 

7.4.2 CO2e per Delivery  

Table 9  shows the CO2e efficiency per delivery with the assumed values. Different assumptions 

will lead to different values, but on a per delivery basis, the tricycle and diesel van seem to have 

a clear advantage (fourth row of Table 9). To compare the results, it is useful to obtain the 

equivalent travel distance that will produce the same level of vehicle phase emissions per 

delivery (fifth row of Table 9). Vehicle phase emissions per delivery are a negligible addition for 

the diesel van but a major addition for the UAV. The UAV vehicle phase emissions per delivery 

are of the same order of magnitude as half the practical range of the UAV. Hence, the UAV 

emissions per delivery can increase by up to 50% when the vehicle phase is taken into account. 

Taking into account both operational and vehicle phases, the tricycle is likely to be more CO2e 

efficient than the UAV. 
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Table 9: Per Delivery Vehicle Phase CO2e Emissions 

Parameter UAV Tricycle Diesel Van 

Number of daily deliveries 4 25 150 

Delivery days per year (days) 260 260   260   

Vehicle life (years) 3 5 10 

Emissions per delivery     

(kg CO2e per delivery) 0.16 0.02 0.03 

Equivalent travel distance (in km)    

(kg CO2e per delivery)  13.0 1.2 0.002 

Range (km)  25 48 625 

Equivalent travel distance as % of range 52 2.5 0.0 

 (*) Included in the vehicle chassis. To improve readability, numbers have been rounded. 



 

52 

 

  



 

53 

 

8.0 OTHER KEY CONSIDERATIONS  

This research has focused on the analysis of UAV delivery costs, energy consumption, and CO2e 

emissions. Other important factors that must be considered are briefly summarized in this section 

but left as future research topics. 

8.1 SAFETY 

There is a concern about the risk of a UAV malfunctioning in mid-air, falling from the sky, and 

damaging property or injuring people. A report commissioned by the FAA (Arterburn et al., 2017) 

indicates that three vehicle characteristics may contribute to fatal drone collisions: kinetic energy, 

ignition sources based on vehicle power systems, and vehicle rotating components. The kinetic 

energy is proportional to the takeoff weight and the square of the aircraft speed. Drone batteries, 

motors, and potential cargo may increase the severity of the crash because they are dense objects. 

The propeller blades attached to quadcopter drones can slice skin, and blade guards may better 

protect people (Arterburn et al., 2017). 

8.2 NOISE 

UAV noise is a potential problem for urban deliveries. Noise may hinder deployment or hours of 

operation and can negatively affect communities and land values (Nelson, 1979) around future 

UAV depots. Research efforts are still not conclusive regarding the seriousness of UAV noise 

(Bulusu et al., 2017). However, from a health perspective, the negative impacts of noise are well 

understood (Passchier-Vermeer and Passchier, 2000; Stansfeld; and Matheson, 2003). 

8.3 LAST-YARD CONSTRAINTS 

An often overlooked problem in UAV delivery discussions is the issue of the last yard of the 

delivery (Figliozzi et al., 2018). Though UAVs’ aerial paths avoid ground congestion and last-

mile delivery problems associated to truck parking and unloading, there is a major challenge in 

terms of the last yard of the delivery process. 

Urban last-yard deliveries are likely to require landing pads or delivery stations, as well as safe 

spaces for takeoff and landing (some companies are discussing dropping or parachuting packages). 

For single home or unit dwellings, the cost implications of the last-yard delivery infrastructure are 

not yet clear. As discussed in the previous sections, there are clear tradeoffs between UAV size, 

efficiency, and safety, and size of the last-yard infrastructure. 

For a multiunit building, rooftops are a largely underutilized urban area that, if retrofitted properly, 

could become prime delivery nodes for the building (whether it is a condominium, business, or 

factory). Provided a suitable structure could be built that would protect the packages from the 

elements as well as proper retrofits that would ensure the safety of people retrieving (or dropping 

off) their packages, rooftop delivery zones would also keep the items secure from theft. Coupling 

these landing pads with rooftop charging stations throughout a downtown area would mean the 

UAVs would be capable of longer flight distances or larger payloads. This kind of network would 

offer a viable complementary freight delivery option to that on the ground level. There are stark 



 

54 

 

differences between last-yard constraints and possibilities when comparing single home versus 

multiunit dwellings or buildings. Last-yard costs and constraints may limit the size of the UAVs 

and therefore limit their efficiency and competitiveness. 

8.4 URBAN VS. RURAL UAV ECONOMICS 

The last-yard configuration will influence turnaround time and UAV productivity. Therefore, the 

economics of UAV deliveries in terms of CPFH will depend on the type of delivery system. 

Likewise, if additional gear or specialized devices are required to improve package security or 

safety, the UAV purchase costs will increase and may be another element that differentiates the 

economics of UAV urban and rural deliveries. 

Rural areas may also utilize fixed-wing UAVs and parachute-based delivery systems that are more 

efficient than rotatory wing systems, which require hovering and/or vertical landing and takeoff. 

There are still a lot of unknowns regarding future costs of UAV deliveries in urban areas. 

8.5 POTENTIAL MARKETS 

UAVs for package delivery have a lot of potential to improve logistics productivity and reduce 

environmental externalities such as trucking diesel engine pollution. However, safety concerns and 

last-yard constraints are likely to limit the benefits that can be achieved through economies of 

scale.   

It is expected that multicopter UAV technology, capabilities, and costs will improve substantially 

in the near future. Hence, there are still many areas to research and model in terms of UAVs’ costs, 

markets, potential benefit, and supply chain impacts. 
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9.0 CONCLUSIONS  

This research presented novel data and models for deliveries utilizing small UAVs. Small UAVs 

were defined as aircrafts with a tare of up to 15 kg and a potential payload of up to 15 kg.  

The survey data shows that UAV payload, size, energy consumption, and cost are positively 

correlated and tend to increase together. Unfortunately, potential safety, noise, and last-yard 

constraints also increase as drone capabilities and size increase. 

Cost metrics such as cost per flying hour (CPFH) are the most relevant for small UAVs since they 

readily take into account the impact of operator labor cost and utilization, clearly the largest cost 

components. The economic analysis indicates that labor/staff costs can range between 30% and 

85% of UAV costs per flying hour. The impact of labor costs will be highly dependent on future 

regulations and the level of automation of the last-mile delivery process. 

Currently-available UAV technology can fill a delivery service niche in sparsely populated areas 

with a low number of customers and density. In rural areas, the regulatory landscape and last-yard 

delivery constraints are also more relaxed. In rural areas, the economic benefit brought about by 

reducing the cost of a driver to visit remote customers are obvious, but in this environment, UAV 

range is a key consideration. 

In dense urban areas, several first- and last-mile service, privacy, and regulatory and security issues 

must be addressed before UAV services are feasible. UAVs are likely to have an edge regarding 

speed delivery if they are operated in uncongested skies where they can outperform slower ground 

vehicles that are delayed by conditions of the congested ground road network. On the other hand, 

drones may not be able to compete in terms of costs with a delivery truck that can deliver hundreds 

of packages to one location in an urban setting. The urban landscape is a place where larger payload 

capacity would be more beneficial than flight distance. Furthermore, new technologies like 

sidewalk delivery robots may also reduce costs and delivery times (Jennings and Figliozzi, 2019) 

and therefore reduce potential UAV market share. 

This research also has introduced a framework to analyze the real-world energy and emissions 

efficiency of UAVs and different ground commercial vehicles. The results of the analysis show 

that UAVs can significantly reduce operational first- and last-mile energy consumption and 

emissions (both well-to-tank and tank-to-wheel) in some scenarios. The analysis utilizing real-

world data indicates that UAVs presently available in the market are significantly more CO2e 

efficient (around 47 times) than typical UPS diesel delivery vehicles in terms of energy 

consumption. In terms of emissions, the differences are even greater (more than 1000 times). 

However, the efficiency measures are more favorable for the conventional van when the analysis 

is done in terms of energy consumption and emissions per unit distance and per kilogram of 

payload delivered. The van can deliver almost 380 times more cargo than the UAV; assuming 

maximum payloads, the typical U.S. van is 8 times more efficient in terms of energy consumption 

but still almost 2.8 times less efficient regarding GHG emissions. Electric trucks and vans are 

much more efficient than the typical U.S. van. Hence, the UAV is not more efficient than electric 

vans in delivery scenarios with more than 10 customers per route. 
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The lifecycle analysis shows that UAV vehicle phase emissions are significant and must be taken 

into account. When vehicle phase emissions are considered, the UAV lifecycle efficiency can be 

reduced by a significant amount. Considering lifecycle emissions, an electric tricycle is likely to 

be more CO2e efficient than the UAV. Hence, in dense urban areas where tricycle deliveries are 

economically feasible (Tipagornwong and Figliozzi, 2014), tricycles are likely to outperform 

UAVs in terms of both energy consumption and lifecycle CO2e emissions. 

Although it is expected that small UAV technology, capabilities, and costs will improve 

substantially in the near future (Floreano and Wood, 2015), it is implausible that UAVs will 

outcompete commercial vehicles in some scenarios. Conventional vehicles outperform UAVs in 

cases where payloads are not small or if a customer is located far beyond the relatively limited 

range of a UAV—range is a function of payload and other variables, but for small quadcopter 

UAVs, practical range is currently less than 25 km.  

Breakthroughs in UAV technologies may affect the typical range of UAVs’ energy consumption 

(assumed to be 10 to 32 wh/km in this research). For example, small fixed-wing UAVs with VTOL 

(vertical takeoff and landing) capabilities may become suitable one day for urban deliveries. Fixed-

wing UAVs are considerably more energy efficient than multicopters in terms of energy 

consumption per unit distance flown. The methodology developed in this research will still be 

applicable even if there are major improvements in terms of UAV design, battery energy storage, 

range, and carrying capacity. 

The future of UAV deliveries will also depend on other factors such as UAV noise levels, safety 

concerns, and last-yard delivery configurations. Future research efforts should study the logistical 

impacts of these factors. 
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10.0 APPENDIX 

APPENDIX A 

 

UAVS SURVEYED 

 
Table 10: List of UAVs and companies surveyed 

UAV Model UAV Manufacturer 

Aibot X6 Aibotix 

Alta 8  Freefly 

AR180  AirRobot 

AR200  AirRobot 

Bebop 2  Parrot 

Inspire 1 DJI 

Inspire 2  DJI 

Matrice 600  DJI 

Mavic PRO  DJI 

Mavrik X8  SteadiDrone 

MD4-1000  Microdrones 

MD4-3000  Microdrones 

Phantom 3 Pro DJI 

Phantom 3 Standard DJI 

Phantom 4  DJI 

Phantom 4 Advanced DJI 

Phantom 4 Pro DJI 

Sky Tech  Flytrex 

Skyranger  Aeryon 

Spark  DJI 

Vader HL  Steadidrone 
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	EXCUTIVE SUMMARY
	EXCUTIVE SUMMARY
	 

	In the past decade, unmanned aerial vehicles (UAV) have become increasingly more popular in the commercial sector. Drones are being used for all kinds of purposes, such as surveillance, inspecting architecture, filming, wildlife research, and more. Freight delivery is a potential application that is getting lots of attention from large companies. 
	This research presented novel data, relationship, and models for deliveries utilizing small UAVs. Small UAVs were defined as aircrafts with a tare of up to 15 kilograms (kg) and a potential payload of up to 15 kg. Since the weight of the UAVs is capped, only drones with engines that are electric were included; noise and pollution problems are likely to hinder urban deployments of internal combustion engines. Internal combustion engines are mostly used in larger UAVs. The scope of the search was limited to m
	The survey of currently available UAVs shows that payload, size, energy consumption, and cost are positively correlated and tend to increase together. Unfortunately, potential safety, noise, and last-yard constraints also increase as drone capabilities and size increase. 
	Cost metrics such as cost per flying hour (CPFH) are the most relevant for small UAVs since they readily take into account the impact of operator labor cost and utilization, clearly the largest cost components. The economic analysis indicates that labor/staff costs can range between 30% and 85% of UAV costs per flying hour. The impact of labor costs will be highly dependent on future regulations and the level of automation of the last-mile delivery process. 
	A novel analysis of lifecycle UAV and ground commercial vehicles’ CO2e emissions is presented. Different route and customer configurations are modeled analytically. Utilizing real-word data, tradeoffs and comparative advantages of UAVs are discussed. Breakeven points for operational emissions are obtained and the results clearly indicate that UAVs are more CO2e efficient for small payloads than conventional diesel vans on a per-distance basis. Drastically different results are obtained when customers can be
	Currently available UAV technology can fill a delivery service niche in sparsely populated areas with low numbers of customers and density. In rural areas, the regulatory landscape and last-yard delivery constraints are also more relaxed. In rural areas, the economic benefit brought about by 
	reducing the cost of a driver to visit remote customers are obvious, but in this environment, UAV range is a key consideration. In dense urban areas, several first- and last-mile service, privacy, regulatory, and security issues must be addressed before UAV services are feasible. UAVs are likely to have an edge regarding speed delivery if they are operated in uncongested skies where they can outperform slower ground vehicles delayed by conditions of the congested ground road network. On the other hand, dron
	The future of UAV deliveries will also depend on other factors such as UAV noise levels, regulations and safety concerns, and last-yard delivery configurations. 
	 
	 
	 
	 

	1.0 INTRODUCTION 
	1.0 INTRODUCTION 
	 

	The integration of new vehicles and technologies in goods distribution and service delivery depends on a number of factors related to vehicle costs, technology, infrastructure, energy sources, and financial incentives. 
	From filming movies or researching a pod of whales to delivering medication or an explosive payload, UAVs are being increasingly utilized for a wide range of tasks. Since 2002 when the Predator drone was first used by the U.S. military in Afghanistan (Sifton, 2012), drones have become smaller and cheaper, making it feasible for people to imagine alternate uses for UAVs, like delivering freight. 
	Since 2011, big names like UPS, Amazon, and Google have thrown their hat into the UAV delivery ring, while other lesser-known companies like Matternet and Zipline have actually started delivery services in Rwanda, Australia, Switzerland, and Bhutan (Mack, 2018). UAVs have become a popular topic of conversation and an exciting source of speculation regarding how they might change the status quo for many businesses. 
	 
	1.1 RESEARCH GOALS 
	Drones are not restricted by the availability of existing infrastructure and can therefore lead to improved last-mile eﬃciency, safety, and reliability. Unmanned aerial vehicles (UAV) for package delivery have a lot of potential to improve logistics productivity and reduce costs and environmental externalities such as trucking diesel engine pollution. 
	The main goal of this research is to analyze, based on a survey of state-of-the-art UAVs, main capabilities and limitations of UAVs in the freight industry. The real-world data collection, analysis, and focus is on UAVs with electric engines. The focus is on UAVs that are small enough to be deployed for deliveries in dense urban areas. Hence, small UAVs are defined as aircrafts with a tare of up to 15 kilograms (kg) and a potential payload of up to 15 kg. 
	This research studies the key factors that affect UAV delivery costs, as well as UAV energy efficiency and the carbon footprint for last-mile deliveries. A survey of current UAVs is utilized to draw real-world data parameters and to model different scenarios such as one-to-one deliveries and one-to-many deliveries. 
	A novel modeling framework based on a UAV performance model is utilized to analyze key drivers of UAV costs, energy consumption, and CO2e emissions. The modeling framework includes constraints for battery energy storage, service range, and delivery times.  
	 
	1.2 ORGANIZATION 
	This report is organized into nine sections or chapters. An extensive, yet not comprehensive, literature review is presented in Section 2. Key equations governing UAV flight, logistical capabilities, and energy consumption are introduced in Section 3. A survey of existing small UAV aircrafts and graphs showing key relationships among tare, payload, purchase cost, and energy consumption are analyzed in Section 4. The economic analysis of UAV operations utilizing the cost per flying hour metric is presented i
	This report is organized into nine sections or chapters. An extensive, yet not comprehensive, literature review is presented in Section 2. Key equations governing UAV flight, logistical capabilities, and energy consumption are introduced in Section 3. A survey of existing small UAV aircrafts and graphs showing key relationships among tare, payload, purchase cost, and energy consumption are analyzed in Section 4. The economic analysis of UAV operations utilizing the cost per flying hour metric is presented i
	 

	 
	 
	 

	2.0 LITERATURE REVIEW
	2.0 LITERATURE REVIEW
	 

	There is a growing literature related to small UAVs. This section highlights some key concepts and references but is not a comprehensive examination of the rapidly evolving and growing body of UAV literature. Many papers in the applied electronics and engine control areas have focused on UAV technology, software, and design issues; these papers, for example, Bristeau et al. (2011), are not reviewed herein because they are not directly relevant to the topic discussed in this report. 
	2.1 LOGISTICS APPLICATIONS 
	Potential advantages and disadvantages of UAVs have already been considered by logistics companies. For example, the logistics services company DHL has identified higher last-mile efficiency, reduction of accidents, and faster deliveries as key potential UAV benefits; key potential challenges associated with UAVs are security, privacy, congestion, and regulatory concerns (Heutger and Kuckelhaus, 2014). UAVs have been featured frequently in the media following announcements made by large corporations such as
	The academic literature has already documented the advantages UAVs can provide in delivering medicines to remote locations (Thiels et al., 2015). Other researchers have analyzed UAVs’ potential applications and challenges (Mohammed et al., 2014) and some authors have focused on the regulatory barriers that can preclude large UAV deployments (Boyle, 2015). 
	Other researchers have analyzed the fit between product characteristics and UAV performance. For example, Wright et al. (2018) looked at various transport options for a variety of delivery categories using UAVs and modes such as land cruisers and motorcycles to examine the cost-effectiveness of UAVs for the delivery of blood for transfusion, medicines, vaccines, and long-tail products. 
	 
	2.2 HEALTH APPLICATIONS 
	UAVs that deliver cargo are already in operation in several different countries. Mostly, these UAVs were specifically tailored to meet the particular demands of the job or service. For example, in Rwanda, there is a great need for life-saving blood medicines in rural parts of the country, but the road infrastructure is very poor. A company called Zipline (2017) has started using fixed-wing autonomous drones to deliver these medicines via parachute faster than any other kind of transportation available. 
	Some researchers have studied the utilization delivery of UAVs to deliver deﬁbrillators (Boutilier et al., 2017; Claesson et al., 2017) or blood (Amukele et al., 2017). Drones are particularly suitable for emergency applications like search and rescue (Karaca et al., 2018), deliveries of critical 
	medical supplies post-disaster, or for emergency response (Ozdamar, 2011; Anaya-Arenas et al., 2014; Thiels et al., 2015; Scott and Scott, 2018). 
	 
	2.3 EMISSIONS 
	Transportation accounts for a large share of total GHG emissions in most developed countries (Hertwich et al., 2009). Regarding UAV operational emissions, Goodchild and Toy (2017) compared VMT and CO2 emissions using scenarios when deliveries are  only made by UAVs or conventional trucks. Results suggest that UAVs emit less emissions when customers are located close to the depot, and trucks emit less for faraway customers. The authors suggest that UAVs and trucks can complement each other. The idea of utili
	Regarding UAV energy consumption, Choi and Schonfeld (2017) model the impact of battery capacity on payloads and flight ranges. Numerical analysis is utilized to optimize the drone fleet size and minimize delivery costs. This study concludes that UAV deliveries are more economical in areas with high customer density and that improved battery technology can significantly reduce UAV fleet size. There are tradeoffs associated with delivery speeds but clear benefits from longer hours of operation. 
	Figliozzi (2017) uses continuous approximation techniques and derives analytical formulas to compare operational and lifecycle emissions and energy consumptions of UAVs with conventional diesel, electric vans, and tricycle delivery services. Figliozzi (2017) shows that the delivery strategy (grouping of customers in a route) aﬀects the relative CO2 emission eﬃciencies. Stolaroﬀ et al. (2018) confirmed previous findings regarding UAV emissions. Moore (2019) compared the operational emissions of six scenarios
	2.4 LOCATION MODELS 
	Another line of research has focused on the location of UAV facilities. For example, Chowdhury et al. (2017) used a continuous approximation approach to develop a humanitarian logistics supply chain post-disaster, considering both drones and truck deliveries. Golabi et al. (2017) studied the relief distribution center location model, where inaccessible demand points are served using drones. Pulver and Wei (2018) developed a facility location model to maximize primary and secondary coverage in the context of
	2.5 VEHICLE ROUTING 
	A large body of research has focused on UAV or drone routing and scheduling, leading to several interesting variants of the traveling salesman and vehicle routing problems. Murray and Chu (2015) studied the ﬂying sidekick traveling salesman problem (FSTSP), where a drone and a truck deliver in collaboration to a set of customers. Ponza (2016) modiﬁed the drone delivery time constraints in Murray and Chu (2015)’s FSTSP formulation and developed a simulated annealing metaheuristic. Agatz et al. (2018) denoted
	Dorling et al. (2017) modeled the drone delivery problem as a single depot multi-trip vehicle routing problem, whereas Kim et al. (2018) use a robust optimization approach to model the impact of air temperature uncertainty on drone battery capacity and studied the ability of a ﬂeet of drones to visit multiple locations. 
	2.6 REGULATORY CONSTRAINTS 
	In 2016, the Federal Aviation Administration (FAA) issued restrictions on the non-recreational use of unmanned aerial vehicles, which effectively prohibited freight delivery from using drones in the U.S. (FAA, 2016). Some restrictions do not affect the drones surveyed  in  Section 4 (400’ maximum altitude, 45 m/s (100 mph) maximum land speed). However, other restrictions prevent any business from currently utilizing drones in a freight delivery service. For example, drones must be flown using VLOS (visual l
	The FAA is partnering with NASA to study when drones can be used in U.S. National Airspace and in what capacities (NASA, 2015). NASA is working on an air traffic management system for drones similar to what exists for today’s air traffic, except that the UAV air space resides mainly within altitudes from 200’ to 500’. This is critical to ensure that the digital aviation infrastructure, which would be designed to organize the many different paths of the UAVs, would prevent drones from crashing into one anoth
	 
	 
	 
	 

	3.0 MODELING UAV FLIGHT 
	3.0 MODELING UAV FLIGHT 
	 

	Before surveying UAV characteristics or estimating UAV costs/emissions, it is first necessary to understand the physics of UAV flight. This section reviews key formulas and factors that govern airborne vehicles’ productivity and energy consumption. 
	3.1 STEADY FLIGHT 
	There are many factors that affect airborne vehicles’ energy consumption. Drag, lift, weight, and thrust forces act over all self-propelled airborne vehicles, including airplanes, helicopters, and UAVs (Anderson and Eberhardt, 2001). 
	Maintaining a steady level flight requires a balance of forces, i.e. an equilibrium of all the forces acting upon an airborne vehicle. According to Newton’s second law, when any object moving in a steady level trajectory at a constant velocity has zero acceleration, all forces applied to the aircraft are balanced. For an airborne vehicle in a steady level trajectory, there are four relevant forces: (i) weight, the force of gravity that acts in a downward direction, (ii) thrust, the force that propels the ai
	and 𝐿𝐷𝑇=𝑚𝑔 
	where: 
	𝐷= drag force [N]  
	𝑇= thrust force [N]  
	𝐿= lift force [N] 
	𝑊= weight force [N] 
	𝑚=  mass [kg] 
	𝑔=  gravity acceleration [m/s2]. 
	 
	An electric cargo UAV has three key mass components: vehicle, battery, and load. For aircrafts, the lift-to-drag ratio or L/D ratio is a key characteristic affecting flight efficiency and the power 
	necessary to fly as a function of travel speed. By disaggregating the vehicle weight into its components and then multiplying by travel speed, it is possible to obtain the theoretical power necessary to move the aircraft: 
	 𝑝𝑡= 𝑇𝑠=(𝑚𝑡+ 𝑚𝑏+ 𝑚𝑙 )𝑔 𝑣𝜗(𝑠) 
	 
	where: 
	𝑝𝑡= theoretical power required for level flight [watts] 
	𝑣= constant velocity travel speed [m/s] 
	𝜗(𝑣)= lift-to-drag ratio or L/D [unit-less] 
	𝑚𝑡= UAV mass tare, i.e. without battery and load [kg] 
	𝑚𝑏= UAV battery mass [kg] 
	𝑚𝑙= UAV load mass [kg] 
	𝑚 =  UAV total mass when loaded [kg], 𝑚= 𝑚𝑡+ 𝑚𝑏+ 𝑚𝑙. 
	 
	The energy necessary to travel a given distance is equal to power by travel time and also affected by the power transfer efficiency from the battery to the propellers (energy loss). The power required for level flight is: 
	 
	𝑝𝑙𝑡=(𝑚𝑡+ 𝑚𝑏+ 𝑚𝑙 )𝑔𝜗(𝑠)𝜂𝑝 𝑑  
	where: 
	𝑝𝑙= power required for level flight [watts] 
	𝑡= travel time [seconds] = 𝑑/𝑠 
	𝑑= travel distance [m] 
	𝜂𝑝= total power transfer efficiency [unit-less] < 1. 
	 
	From (1), it is possible to observe that energy consumption is directly proportional to aircraft mass and travel distance. Expression (1) does not include the power needed to feed the sensors and other electronics, which is relatively small for a long-range delivery drone. Travel speed drops out of expression (1); however, the ratio between Lift and Drag is typically a function of travel speed. For each aircraft, there is a speed where L/D is highest or optimal, which is defined as 𝜗∗. Cargo airplanes are 
	 
	3.2 HOVER 
	The power required to hover is proportional to the power of the helicopter weight (Johnson, 2012) and can be approximated by: 𝑝ℎ=𝑘ℎ 𝑊32√2𝜌𝐴 
	where: 
	𝑝ℎ=  power required to hover [watts] 
	𝑊=𝑚𝑔=  weight of the aircraft [N] 
	𝐴=   effective area of the blades 
	𝜌=  air density 
	𝑘ℎ=   parameter that takes into account the aircraft figure of merit and the induced power factor. 
	Hence, weight and payload are key factors affecting the performance of a UAV and their range. In practice, helicopters tend to be designed assuming a value of gross operational weight (Johnson, 2012). 
	 
	3.3 STEADY LEVEL FLIGHT OPTIMAL SPEED AND MAX. RANGE 
	On steady flight drag is the force that opposes the motion of an aircraft. Total drag is produced by the sum of the profile drag, induced drag, and parasite drag. 
	Profile drag is the drag incurred from frictional resistance of the blades passing through the air. It is almost constant or increases moderately as airspeed increases. Induced drag is the drag incurred as a result of production of lift. In rotary-wing aircraft like small UAVs, induced drag decreases with increased aircraft airspeed. 
	Parasite drag is the drag incurred from the non-lifting portions of the aircraft. Parasite drag increases rapidly with airspeed and is conceptually equivalent to the aerodynamic resistance found in ground vehicles.  
	The power required to maintain steady level flight as a function of speed is the sum of the three drag components (Johnson, 2012): 
	 𝑝𝑙(𝑣)=𝑘0 𝑣+𝑘𝑖 𝑣−1+𝑘𝑝 𝑣3  
	 
	where: 
	𝑝𝑙(𝑣)=  power required for level flight as a function of speed [watts] 
	𝑘0,𝑘𝑖,𝑘𝑝=  parameters associated to profile, induced, and parasite drag respectively   
	 
	The maximum range is obtained when drag is minimized and lift-to-drag ratio 𝜗(𝑣) is maximized (Johnson, 2012). Minimizing the drag forces utilizing the first order condition, the speed 𝑣𝑟  that maximizes the range is equal to: 𝑣𝑟=√𝑘𝑖𝑘𝑝4 
	Hence, the optimal flying speed is dependent on aircraft size, aerodynamic and shape factors as well as environmental conditions that determine the relative value of the parameters 𝑘𝑖 and 𝑘𝑝 (Johnson, 2012). 
	 
	 
	 
	 

	4.0 SURVEY DATA AND ANALYSIS
	4.0 SURVEY DATA AND ANALYSIS
	 

	Small drones are still a relatively new type of vehicle. Given the lack of available data regarding their characteristics and performance, a survey was carried out to fill this knowledge gap. The search was focused on UAVs small enough to be deployed for deliveries in dense urban areas (tare up to 15 kg and a potential payload of up to 15 kg).  
	  
	4.1 METHODOLOGY 
	To obtain the data for the different UAV models, the researchers conducted an extensive internet search of UAV manufacturers and their products. They utilized information published on their websites, along with downloadable material such as user manuals, technical specifications, and press releases. Though most information was obtained this way, some specifications were procured through consumer tech reports or online retailers. In some cases, customer service was contacted to request additional information
	Unfortunately, not all manufacturers posted all the relevant logistical data needed for a proper analysis. For instance, few manufacturers provided hovering times and most manufacturers did not provide detailed technical specifications regarding battery chargers or recharge times for the battery. In some cases, there was also a lack of detailed performance data that is useful for the freight industry, e.g. flight range with different levels of payload, or the number of cycles a battery can be recharged befo
	The scope of the search was limited to multicopter drones that can potentially deliver in both urban and rural areas. Fixed-wing drones were excluded from the search because currently only copters have the capability of hovering and delivering products in tight spaces (required in urban areas); fixed-wing UAVs typically cannot land or take off vertically. Single copters can hover similarly to helicopters, but were not included in the search because these aircrafts tend to be larger, and the size of the prop
	The UAVs studied in this report have a tare of 15 kg or less and a payload of 15 kg or less. Since the weight of the UAVs is capped, only drones with engines that are electric were included; noise and pollution problems are likely to hinder urban deployments of internal combustion engines. Internal combustion engines are mostly used in larger UAVs, and a later section discusses issues associated with size and noise limitations. 
	Finally, this is a rapidly evolving and “young” industry without clear standards yet. Focusing only on electric multicopter drones allows for a more in-depth discussion of state-of-the-art drone 
	delivery capabilities. The lack of standardized data from manufactures provided a major challenge in terms of data presentation. Hence, instead of presenting data in tables that include each model, each topic is discussed in terms of observed trends, the typical value (median) and ranges found (25th and 75th intervals). 
	4.2 SPEED, FLYING TIMES, RANGES AND PAYLOADS 
	In shipping, speed is a key logistical consideration. The higher the speed, the faster the cargo can be delivered. Most speeds are in the range of 16 to 20 meters per second (35 to 45 miles per hour). The range of speeds is more than adequate for urban areas, considering that UAVs may travel more direct aerial routes and are not affected by ground road congestion. 
	Most available flying times are in the range of 20 to 30 minutes. Flying times are mainly restricted by battery constraints. Flight range is heavily dependent on a multitude of factors, such as battery efficiency, battery size, payload size, weather, topography, and whether it is flown within line-of-sight (LOS), autonomously, or remotely. Battery constraints and limited flying times determine that the typical range of current multicopters is between 15 and 35 km (roughly 10 and 22 miles). The practical ran
	Heavier payloads also reduce the range. For example, a drone may be able to fly 25 km with a 2 kg payload, but only 20 km with a 3 kg payload. The maximum payloads surveyed ranged from 1.8 kg to 6.4 kg (4 to 14 lbs). As a reference, Amazon’s future delivery service limits itself to 2.3 kg or 5 pounds (Amazon, 2016). There is a clear trend linking the size and weight of the drone with its maximum payload capacity. As the drones increase in size and weight, there is also an increase in the amount they can lif
	The practical range of drones will determine not only the service area of delivery but also the amount of infrastructure needed to serve an area or to achieve a particular level of service, e.g. Amazon’s 30 minute or less policy. A shorter range would require more closely spaced nodes at which drones could recharge, whether those were mobile vans, warehouses, or simply a charging station that is part of a charging network. 
	4.3 SIZE AND WEIGHT 
	In general, larger drones have a higher payload and heavier drones have a longer range (more and heavier batteries). The typical payload/takeoff-weight ratio ranges from 0.33 to 0.20, and the battery/takeoff-weight ratio typically ranges from 0.30 to 0.25. Heavier drones tend to be larger (longer diagonal measurement). The average size across the diagonal is 1,045 mm not including the propellers, with a typical range from 1485 to 350 mm. The typical takeoff weight is approximately 4 kg, but longer-range dro
	Figure 1 shows a clear positive relationship between the UAV tare and the diagonal length (excluding propellers) of the UAV frame. 
	Figure 1 shows a clear positive relationship between the UAV tare and the diagonal length (excluding propellers) of the UAV frame. 
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	  also shows a remarkably linear relationship between payload and takeoff weight.
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	Figure 1: UAV Diagonal vs. Tare  
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	Figure 2: Max. Payload vs. Tare 
	4.4 BATTERY/ENERGY  
	Batteries are primarily lithium based (also lithium polymer), though a few UAVs use lithium-ion batteries. Batteries are typically composed of several cells. Voltages are typically between 22.8 and 11.4V. Battery energy typically ranges between 200 and 70 Wh, though some longer range drones like the Microdrone MD4-3000 can have a battery with over 750 Wh. 
	Batteries are a major component of the weight of a drone. In small drones, the battery can be heavier than the maximum payload. In larger drones, the battery can weigh as much as 80% of the maximum payload. Battery technology is a key constraint for UAV performance; typical lithium-based batteries used in available drones have an energy density ranging from 190 to 175 wh/kg. The consistency of ratios between tare, battery weight, and battery technology is confirmed by 
	Batteries are a major component of the weight of a drone. In small drones, the battery can be heavier than the maximum payload. In larger drones, the battery can weigh as much as 80% of the maximum payload. Battery technology is a key constraint for UAV performance; typical lithium-based batteries used in available drones have an energy density ranging from 190 to 175 wh/kg. The consistency of ratios between tare, battery weight, and battery technology is confirmed by 
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	, which shows a remarkably linear relationship between battery energy and tare. 
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	Figure 3: Battery Energy vs. Tare 
	Recharge time will be an important factor in freight delivery logistics. The longer it takes to recharge a battery, the longer a drone sits on the sidelines being unproductive. Long recharge times might prompt a business to purchase more drones or batteries to be able to maintain an ever-ready drone fleet. The majority of the drones had longer recharge times than flight times: sometimes as much as 500% longer. Recharge times are also affected by the type of battery charger used. Faster recharge times requir
	Finally, mostly drones of up to 15-20 kg of tare have electric engines. Heavier UAVs use internal combustion engines due to the higher specific energy of fossil fuels. However, as battery technology improves, it is likely that electric drones will also grow in size and weight. 
	 
	 
	4.5 PURCHASE COSTS 
	There is a wide range of purchase costs; small multicopters cost a few hundred dollars and the most expensive multicopters cost over $20,000 each. The wide range is explained by the different capabilities and the cost of the batteries. In some cases, the batteries and the charger can be nearly as expensive as the cost of the drone itself (everything but the battery). 
	UAV purchase cost values are somewhat hard to analyze because they change frequently, and also because many drones can be customized and different features may be added or removed (e.g. charger, additional batteries). In addition, some costs like shipping or taxes vary significantly by state or country. When many costs were available, purchase costs for standard UAVs (i.e. without additional features) were chosen for the analysis. 
	Figure 4
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	shows another remarkably linear relationship, in this case between purchase cost and tare. Another linear trend is observed in 
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	between battery
	 energy and purchase cost. These trends suggest that the unit cost per mass or energy density is relatively constant for the range of surveyed UAVs. 
	Empty weight cost is a commonly used metric in the aviation industry because it tends to remain constant, even across different aircraft types (Valerdi, 2005). Hence, it is not surprising that it is also a useful metric for estimating UAVs purchase costs. 
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	Figure 4: Tare vs. Purchase Cost 
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	Figure 5: Battery Energy vs. Purchase Cost 
	 
	 
	4.6 PERFORMANCE 
	In the past, the performance of UAVs has been measured in terms of the product of UAV tare and flying time (USOSOD, 2005). The product of UAV tare and flying time incorporates a metric such as flying time that is closely linked to range. Hence, this is a key metric for understanding and comparing UAV capabilities. As shown in 
	In the past, the performance of UAVs has been measured in terms of the product of UAV tare and flying time (USOSOD, 2005). The product of UAV tare and flying time incorporates a metric such as flying time that is closely linked to range. Hence, this is a key metric for understanding and comparing UAV capabilities. As shown in 
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	, the relationship is also remarkably linear.  
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	Figure 6: Flight time-tare vs. Cost 
	 
	The same relationship holds if the natural logarithm of costs and tare-flying time is plotted (see 
	The same relationship holds if the natural logarithm of costs and tare-flying time is plotted (see 
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	). 

	Valerdi (2005) also observed a linear relationship when plotting natural logarithms of costs and tare-flying time. For Valerdi’s data, natural logarithms (nl) were a logical choice, since the ratio between most expensive and least expensive military UAV included in the graph was approximately 600, whereas in our survey, the ratio between most expensive and least expensive civilian UAV is approximately 40. 
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	Figure 7: ln(flight time-tare) vs. ln(cost) 
	 
	The scarcity of UAV performance data was also noted by Valerdi (2005): only seven observations were included in Valerdi’s graphs. 
	 
	4.7 ENERGY CONSUMPTION 
	UAV energy consumption increases as a function of UAV flying time and weight, as discussed in Chapter 3. 
	UAV energy consumption increases as a function of UAV flying time and weight, as discussed in Chapter 3. 
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	 shows the relationship between energy consumed, measured as battery energy content, per unit of flying time and tare. As expected, there a clear link between battery energy content, fly time, and tare.  
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	Figure 8: Battery Energy / Flight Time vs. Tare (linear relationship) 
	 
	The relationship can be linear but there are also theoretical reasons to think that it can be a power function of weight (see Figure 9). 
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	Figure 9: Battery Energy / Flight Time vs. Tare (power relationship) 
	 
	The upper efficiency, in terms of energy consumed per distance traveled, can be estimated utilizing the battery energy and the maximum flying time and speed. The relationship between energy consumed per distance traveled and tare are shown in Figures 10 and 11 (linear and power relationship respectively).  
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	Figure 10: Energy / Distance vs. Tare (linear relationship) 
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	Figure 11: Battery Energy / Flight Time vs. Tare (power relationship) 
	The previous graphs, Figures 8, 9, 10 and 11, imply economies of scale regarding energy consumed per unit of mass flown or distance traveled.   
	4.8 OPERATIONAL LIMITATIONS 
	Most drones can operate with headwinds of less than 10 meters per second, though larger drones are less susceptible to adverse weather conditions. Hence, many drones cannot be reliably deployed in windy areas due to either potentially limited service times or a reduction in flying range caused by strong headwinds. 
	The operating temperature ranges typically between -10° C and 45° C; hence, drones cannot be deployed in extremely hot or cold areas. Finally, remote controlled maximum transmission distance is typically far less than the maximum flying range, though this limitation can be overcome by designing UAVs with more expensive sensors and communication devices. 
	 
	4.9 SUMMARY  
	This section highlights some important trends, mostly linear, among UAV tare, payloads, battery energy, purchase costs, and energy consumption per unit of time flown. Though the trends are intuitive, the reader is reminded that they are drawn from a relatively small set of observations, that manufactures information is difficult to compare, and that UAVs are evolving rapidly. 
	According to FAA (2016) rules, drones must not be flown over populated areas, less than 400’ from any structure, when visibility is a less than three miles and when there is reduced daytime visibility. These restrictions allow freight to be delivered in rural environments over short distances and on very clear days. Most of the surveyed multicopter drones’ basic capabilities, e.g. speed, altitude, and payload, do not violate FAA’s restrictions. However, restrictions governing where and what the drone can fl
	 
	 
	 

	 
	 
	 

	5.0 ECONOMIC ANALYSIS
	5.0 ECONOMIC ANALYSIS
	 

	This section focuses on the economic analysis of UAVs. Most airplane costs are proportional to the hours flown, and costs are linear in time (Swan and Adler, 2006). Assuming a constant operating speed, time costs are also proportional to distance. In addition, non-time costs are also commonly proportional to departure cycles and kilometers (Swan and Adler, 2006). The cost per hour flown or cost per flying hour is also a basic metric to understand and measure aircraft costs for military aircrafts (Laubacher,
	For civilian aircrafts, typically, the analysis is also done at the seat-hour level. In this research, the costs of UAVs will be analyzed as a function of costs per flying hour (CPFH). 
	5.1  COST ASSUMPTIONS  
	The cost of operating commercial aircrafts can be broken down into two main categories: airborne cost and ground costs. UAVs’ airbone costs include energy and UAV/battery depreciation plus operator cost per hour. Ground costs include maintenance plus ancillary staff, services, and facilities. 
	5.1.1 UAV Operation Staff Costs  
	Many uncertainties exist in quantifying the number of staff per UAV and labor cost variables. Labor costs should include not only wages but also fringe benefits, training costs, and employee turnover. Regulation may play a crucial role; relaxing line of sight operation rules may increase UAV operator productivity, i.e. being able to control and monitor two or more UAVs simultaneously. Based on salaries paid in the trucking industry, a $40 per hour total cost per UAV operator seems reasonable. However, it is
	 
	5.1.2 Maintenance costs 
	Specialized staff for routine maintenance or for diagnosing problems and repairing or replacing parts will be required. In the aviation industry, many routine monitoring and maintenance costs are related to hours of operation or flying hours. Compensation for aircraft mechanics can be $80 per hour and electronics technicians $90 per hour or more (Perritt and Sprague, 2016). 
	5.1.3 Other Ground Costs 
	Other ground costs include UAV storage, facilities, and ancillary services. This tend to be fixed costs and harder to incorporate into CPFH estimations without major assumptions regarding business economies of scale and productivity. 
	5.1.4 Energy Costs  
	UAVs analyzed in this research have electric propulsion systems, and based on their size, it is possible to have good estimations of energy consumption and electricity costs per hour flown. Combining the average price of a kilowatt-hour and the energy consumption (see Survey chapter) of a UAV, it is possible to estimate an electricity cost of approximately $0.15 per hour. 
	 
	5.1.5 Purchase Cost and Economic Life  
	The purchase cost of a UAV is related to its size and tare (see Survey chapter). The economic life of UAVs is uncertain. Scarce data is available from which to estimate the economic life of a small UAV, but it is likely that one year and no residual value are reasonable assumptions (Perritt and Sprague, 2016). 
	Another significant cost element is related to battery cost and life. There is a linear relationship between battery energy and its cost. In addition, batteries have a life that is related to charging/discharging cycles, with approximately 500 cycles before replacement. 
	5.1.6 Software and Communications Cost 
	If UAVs do not operate within line of sight of the operator, more sophisticated software, sensors, data processing chips, and communication devices are required to detect and avoid potential collisions and problems. 
	5.1.7 Productivity  
	The UAV productivity measured as the number of deliveries per hour will depend on many factors. Simplifying assumptions are necessary to develop values for UAVs CPFH: 
	- Highest UAV productivity is achieved by continuous flying, though in the real world there are also setup times related to takeoff, drop-off, swapping batteries, and reloading the UAV with a new shipment. A six minute setup time per delivery is assumed in the CPFH values presented in this chapter. 
	- Highest UAV productivity is achieved by continuous flying, though in the real world there are also setup times related to takeoff, drop-off, swapping batteries, and reloading the UAV with a new shipment. A six minute setup time per delivery is assumed in the CPFH values presented in this chapter. 
	- Highest UAV productivity is achieved by continuous flying, though in the real world there are also setup times related to takeoff, drop-off, swapping batteries, and reloading the UAV with a new shipment. A six minute setup time per delivery is assumed in the CPFH values presented in this chapter. 

	- From the UAV survey data chapter, typical UAV range and operating speeds are drawn. Drone purchase costs and battery size are estimated based on a UAV range of 30 km. A circular service region and homogenous demand distribution is also assumed. An average of 1000 deliveries per square-kilometer per year is assumed. 
	- From the UAV survey data chapter, typical UAV range and operating speeds are drawn. Drone purchase costs and battery size are estimated based on a UAV range of 30 km. A circular service region and homogenous demand distribution is also assumed. An average of 1000 deliveries per square-kilometer per year is assumed. 

	- It is important to consider that UAVs may not be able to operate with adverse weather conditions or at night (due to noise regulations, for example). In addition, demand is likely to have highs and lows, which reduces potential utilization. Accounting for all the mentioned limitations and for periods of high and low demand, an average of 55.6 deliveries per drone-week are assumed. 
	- It is important to consider that UAVs may not be able to operate with adverse weather conditions or at night (due to noise regulations, for example). In addition, demand is likely to have highs and lows, which reduces potential utilization. Accounting for all the mentioned limitations and for periods of high and low demand, an average of 55.6 deliveries per drone-week are assumed. 


	5.2 CPFH ESTIMATIONS 
	Based on the previous assumptions, it is possible to estimate UAV CPFH. The preliminary estimations show that energy costs are almost negligible. UAV and battery costs are significant, but the largest item is staff costs. Two scenarios are chosen to illustrate the relative weight of staff costs. 
	In the first scenario, an ideal scenario where regulation allows for beyond line of sight control, one staff member can control 10 UAVs simultaneously. This figure includes UAV operators and also support staff such as technicians, customer service, support staff, etc. The figures contained in 
	In the first scenario, an ideal scenario where regulation allows for beyond line of sight control, one staff member can control 10 UAVs simultaneously. This figure includes UAV operators and also support staff such as technicians, customer service, support staff, etc. The figures contained in 
	Table 1
	Table 1

	 show that even in this optimistic scenario, staff costs account for more than 1/3 of the CPFH. 

	In the pessimistic scenario where regulation does not allow for beyond line of sight control, one staff member can control 0.9 UAVs simultaneously. This figure must be less than one because it includes one UAV operator per flying UAV and also support staff such as technicians, customer service, etc. The cost figures included in 
	In the pessimistic scenario where regulation does not allow for beyond line of sight control, one staff member can control 0.9 UAVs simultaneously. This figure must be less than one because it includes one UAV operator per flying UAV and also support staff such as technicians, customer service, etc. The cost figures included in 
	Table 2
	Table 2

	. This figure indicate that staff costs can account for a CPFH share of 85% or more. 

	 
	 Table 1: CPFH – Assuming 10 UAVs per staff 
	Cost Item 
	Cost Item 
	Cost Item 
	Cost Item 
	Cost Item 

	Cost  
	Cost  

	Percentage 
	Percentage 



	Drone 
	Drone 
	Drone 
	Drone 

	 $/hr         5.57  
	 $/hr         5.57  

	37.2% 
	37.2% 


	Battery 
	Battery 
	Battery 

	 $/hr         4.06  
	 $/hr         4.06  

	27.1% 
	27.1% 


	Energy 
	Energy 
	Energy 

	 $/hr         0.15  
	 $/hr         0.15  

	1.0% 
	1.0% 


	Staff 
	Staff 
	Staff 

	 $/hr         5.21  
	 $/hr         5.21  

	34.8% 
	34.8% 


	TOTAL 
	TOTAL 
	TOTAL 

	 $/hr       14.98  
	 $/hr       14.98  

	100.0% 
	100.0% 




	 
	Table 2: CPFH – Assuming 0.9 UAVs per staff 
	Cost Item 
	Cost Item 
	Cost Item 
	Cost Item 
	Cost Item 

	Cost  
	Cost  

	Percentage 
	Percentage 



	Drone 
	Drone 
	Drone 
	Drone 

	 $/hr         5.57  
	 $/hr         5.57  

	8.2% 
	8.2% 


	Battery 
	Battery 
	Battery 

	 $/hr         4.06  
	 $/hr         4.06  

	6.0% 
	6.0% 


	Energy 
	Energy 
	Energy 

	 $/hr         0.15  
	 $/hr         0.15  

	0.2% 
	0.2% 


	Staff 
	Staff 
	Staff 

	 $/hr       57.87  
	 $/hr       57.87  

	85.6% 
	85.6% 


	TOTAL 
	TOTAL 
	TOTAL 

	 $/hr       67.64  
	 $/hr       67.64  

	100.0% 
	100.0% 




	 
	5.3 SUMMARY  
	This section focused on the economic analysis of UAVs, and key insights include the high impact of labor/staff costs. Regulation regarding staff needed per UAV-hour is likely to play a sizable role, and therefore there is large amount of variability in the figures provided. 
	Cost metrics such as cost per flying hour (CPFH) are the most relevant for small UAVs since they readily take into account the impact of operator labor cost and utilization, clearly the largest cost components. Other researchers have also concluded that UAV staff costs are likely to be more economically significant than other costs at any reasonable level of utilization (Perritt and Sprague, 2016). 
	 
	6.0 MODELING ENERGY CONSUMPTION
	6.0 MODELING ENERGY CONSUMPTION
	 

	This sections deals with the estimation of UAV energy consumption. Two basic scenarios are analyzed; first, a one-to-one scenario where a vehicle travels to a destination and drops its load and then returns empty to its depot, and later, a one-to-many scenario where a vehicle delivers to multiple destinations before returning empty to its depot. 
	  
	6.1 ONE-TO-ONE ENERGY CONSUMPTION  
	In this scenario, a vehicle (UAV or van) travels to a destination and drops its load and then returns empty. By reversing the order, it is possible to model a pick up. Without loss of generality, drop-off services will be assumed herein. Due to noise and pollution concerns, it will also be assumed that electric UAVs are utilized for urban services (internal combustion engines pollute more and are noisier). Only one vehicle is utilized, i.e. there is no load transfer or intermediate depots. Utilizing the equ
	 (𝑚𝑡+ 𝑚𝑏+ 𝑚𝑙 )𝑔𝜗(𝑠)𝜂𝑝 𝑑+(𝑚𝑡+ 𝑚𝑏 )𝑔𝜗(𝑠)𝜂𝑝 𝑑 
	 
	This expression can be simplified utilizing 𝑐𝑚 the ratio between the tare and the gross vehicle weight of the UAV, i.e. the ratio between the weight of the unloaded UAV and the weight of the fully loaded UAV. In the case of electrical batteries, the weight of the battery does not change as a function of distance traveled. However, when batteries are charged, there are losses that are captured by the recharging efficiency. The total energy consumed to serve one customer is: 
	 
	𝐸1𝑢= 𝑔𝑑𝜗(𝑠) 𝜂𝑝𝜂𝑟(𝑚𝑡+ 𝑚𝑏+ 𝑚𝑙 )+(𝑚𝑡+ 𝑚𝑏) = 𝑔𝑑𝑚𝜗(𝑠)𝜂𝑝𝜂𝑟(1+ 𝑐𝑚 )    
	 
	where: 
	𝐸1𝑢= UAV energy necessary to serve one customer [joules] 
	𝑐𝑚= empty weight fraction [unit-less], 𝑐𝑚= (𝑚𝑡+ 𝑚𝑏 )(𝑚𝑡+ 𝑚𝑏+ 𝑚𝑙 )<1  
	𝜂𝑟= battery recharging efficiency [unit-less]. 
	 
	The energy necessary to serve one customer utilizing a conventional vehicle can be expressed as: 
	 𝐸1𝑐=2𝑘𝑐𝑑 𝑓𝑒𝑐𝑓 
	 
	where:  
	𝐸1𝑐= conventional vehicle energy necessary to serve one customer [joules] 
	𝑓𝑐= fuel consumption [liters/100 km] 
	𝑐𝑓= conversion fuel energy factor [J/liter] 
	𝑘𝑐= depot-customer distance circuitous factor relative to the UAV[unit-less]. 
	 
	In this research, it is assumed that 𝑘𝑐= 1.0 unless stated otherwise. The energy needed per unit distance traveled can be obtained by dividing the previous expressions by 2𝑑. The result is respectively: 
	 
	𝑒1𝑢=  𝑔𝑚𝜗(𝑠)𝜂𝑝𝜂𝑟1+ 𝑐𝑚2  𝑒1𝑐=𝑘𝑐 𝑓𝑒𝑐𝑓 
	 
	where: 
	𝑒1𝑢= UAV energy necessary to serve one customer per unit of distance traveled [joules/meter] 
	𝑒1𝑐= Commercial vehicle energy necessary to serve one customer per unit of distance traveled [joules/meter]. 
	 
	To quantify the energy efficiency of UAVs, the ratio of latter two expressions can be estimated as follows: 
	 
	𝜌1𝑒𝑛=2𝑘𝑐 𝑐𝑓𝑓𝑐 𝜗(𝑠) 𝜂𝑝𝜂𝑟𝑔𝑚(1+ 𝑐𝑚 ) 
	 
	where: 
	𝜌1𝑒𝑛= relative energy efficiency of UAVs when serving one (1) customer (one-to-one service). 
	It can be observed from this last equation that distance to the customer drops out from the expression. As expected, the relative efficiency of UAVs increases as the mass of the UAV decreases when the cargo has a higher share of the total UAV mass, and when the UAV power delivery and battery recharging efficiencies increase. The relative efficiency of the UAV decreases when the fuel consumption of the conventional vehicle decreases. 
	 
	6.2 RESULTS FOR ONE-TO-ONE ROUTES 
	This section applies the formulas developed in the previous section to compare the energy efficiency of a typical U.S. conventional cargo van and a mainstream UAV, assuming one-to-one deliveries (one customer per route). Table 1 shows the relevant aircraft and vehicle characteristics. Data for the cargo van was obtained from Saenz et al. (2016) and data for the MD4-3000 UAV was obtained from the manufacturer’s website (MicroDrones, 2016). 
	Table 3: Vehicle characteristics and emissions parameters 
	 
	 
	 
	 
	 

	UAV 
	UAV 

	Diesel cargo van 
	Diesel cargo van 



	Specification 
	Specification 
	Specification 
	Specification 

	MD4-3000 
	MD4-3000 

	RAM ProMaster 2500 
	RAM ProMaster 2500 


	Take off / Gross weight 𝑚 
	Take off / Gross weight 𝑚 
	Take off / Gross weight 𝑚 

	15.1 kg 
	15.1 kg 

	4060 kg 
	4060 kg 


	Tare / Curb Weight 𝑚𝑡 
	Tare / Curb Weight 𝑚𝑡 
	Tare / Curb Weight 𝑚𝑡 

	10.1 kg 
	10.1 kg 

	2170 kg 
	2170 kg 


	Payload 𝑚𝑙 
	Payload 𝑚𝑙 
	Payload 𝑚𝑙 

	5.0 kg 
	5.0 kg 

	1890 kg 
	1890 kg 


	Empty weight factor 𝑐𝑚 
	Empty weight factor 𝑐𝑚 
	Empty weight factor 𝑐𝑚 

	0.67 
	0.67 

	0.53 
	0.53 


	Battery/Fuel Storage Capacity* 
	Battery/Fuel Storage Capacity* 
	Battery/Fuel Storage Capacity* 

	777 wh 
	777 wh 

	8.63 kWh 
	8.63 kWh 


	𝑒𝑔𝑡𝑏 or 𝑒𝑤𝑡𝑡 
	𝑒𝑔𝑡𝑏 or 𝑒𝑤𝑡𝑡 
	𝑒𝑔𝑡𝑏 or 𝑒𝑤𝑡𝑡 

	1.235 lbs CO2e / kWh 
	1.235 lbs CO2e / kWh 

	5.108 lbs CO2e / gallon 
	5.108 lbs CO2e / gallon 


	𝑒𝑏𝑡𝑝 or 𝑒𝑡𝑡𝑤 
	𝑒𝑏𝑡𝑝 or 𝑒𝑡𝑡𝑤 
	𝑒𝑏𝑡𝑝 or 𝑒𝑡𝑡𝑤 

	-  
	-  

	22.72 lbs CO2e / gallon 
	22.72 lbs CO2e / gallon 


	Range 
	Range 
	Range 

	36 km   
	36 km   

	695 km  
	695 km  


	Energy/fuel consumption  
	Energy/fuel consumption  
	Energy/fuel consumption  

	21.6 wh/km* 
	21.6 wh/km* 

	1016 wh/km* 
	1016 wh/km* 


	 
	 
	 




	* Calculated utilizing manufacturer information. It was assumed that the energy content of gasoil is 34200 kJ/liter and therefore 22 mpg = 1016 wh/km. To improve readability, numbers have been rounded. 
	 
	 
	The MD4-3000 is a state-of-the-art UAV that can be used to carry objects or for aerial photography/filming purposes. The manufacturer’s website contains all the data necessary to estimate energy consumption for a given load. The MD4-3000 capabilities seem similar to the HorseFly UAV tested by UPS in February 2017. The battery-powered HorseFly drone recharges while docked in the UPS van, has a 30-minute flight time, and can carry a package weighing up to 4.5 kg (HorseFly, 2017). 
	When comparing the aircraft and the vehicle, there is a large difference in vehicle mass, carrying capacity, engine power, and energy stored. The application of the formulas developed in the previous sections generate the numbers contained in 
	When comparing the aircraft and the vehicle, there is a large difference in vehicle mass, carrying capacity, engine power, and energy stored. The application of the formulas developed in the previous sections generate the numbers contained in 
	Table 4
	Table 4

	. Assuming a payload of 5.0 kg, the UAV is almost 47 times more efficient (𝜌1𝑒𝑛=47) than the van in terms of energy consumed per unit distance. The same energy is consumed if the van travels one time and delivers 47 packages at once (assuming UAV utilizes 21.6 wh/km) or if the UAV travels back and forth 47 times and delivers one package at the time. 

	What is generating this 𝜌1𝑒𝑛=47 value? It is possible to disaggregate 𝜌1𝑒𝑛, i.e. expression (6), into two components, assuming that 𝑘𝑐 = 1: 
	 
	1<2 (1+ 𝑐𝑚 )<2 [unit-less] 
	 
	𝑐𝑓𝑓𝑐 𝑔𝑚/ (𝜗(𝑠) 𝜂𝑝𝜂𝑟)   [unit-less] 
	 
	The first term is bounded in the interval (1, 2) and is a function of the relative mass size of the load with respect to the total UAV mass and approximately equal to 1.2 in the case study. The second term is approximately 39 and accounts for the large difference in energy consumption between the conventional vehicle and the UAV. This term can be interpreted as the ratio between the energy necessary to move (per unit distance) the van and the energy necessary to move (per unit distance) a mass equivalent to
	There is a significant mass difference between the van and the UAV, but electric engines also produce simpler and more efficient machines. The product  𝜂𝑝𝜂𝑟 is the overall efficiency to deliver power to the battery and then to the propellers and is assumed to be (0.90)(0.73)= 0.66; in comparison, typical diesel vehicles may utilize 25% of the potential energy stored in the fuel to move the vehicle (most of the energy contained in diesel fuel is dissipated as heat). 
	6.3 MODELING ONE-TO-MANY ROUTES 
	This section presents the analytical framework to analyze the efficiency of ground vehicles when several costumers can be grouped in a route (one-to-many configuration). In this scenario, there 
	are two or more customers per route served by the same ground vehicle (one ground vehicle and many stops or customers per route). 
	The ground delivery vehicle can combine customers in one route; however, the UAV cannot do multiple drops without first returning to the depot to reload. The UAV travels to a destination, drops its load, and then returns empty to the launching location, where a new package is loaded, and so on (still one-to-one service for UAVs). For the sake of simplicity, it is assumed that there are 𝑛 customers that are delivered the type of same package (weight). 
	Assuming that a UAV can serve only one customer at a time due to volume and/or weight limitations, the energy necessary to serve 𝑛 customers by a UAV is: 
	 
	𝐸𝑛𝑢=  𝑛 𝑔𝑟𝑚𝜂𝑝𝜂𝑎𝜗(𝑠)(1+ 𝑐𝑚 ) 
	 
	where: 
	𝐸𝑛𝑢= UAV energy necessary to serve 𝑛 customers [joules]. 
	 
	Conventional vehicles’ typical delivery (or pick-up) routes serve many customers. Continuous approximation models can be utilized to model the average distance traveled to serve 𝑛 customers (Daganzo, 2005). A continuous approximation formula, empirically validated, that is appropriate for customer delivery areas located away from the depot is the following (Figliozzi, 2008): 
	   𝑑𝑛=2𝑘𝑐𝑑̅ +𝑘𝑙√𝑛𝐴 
	where: 
	𝑑𝑛= average distance traveled to serve 𝑛 customers by one vehicle [km]  
	𝑑̅ = average distance between customers and the depot [km] 
	𝑛= number of stops or deliveries [unit-less]  
	𝐴= size of service area containing 𝑛 customers [km2] 
	𝑘𝑙= local customer distribution distance circuitous factor [unit-less].  
	 
	Then, the energy necessary to serve 𝑛 customers utilizing 𝑣 conventional vehicles is:  
	 
	𝐸𝑛𝑐= 𝑐𝑓𝑓𝑐[2𝑘𝑐𝑑̅ +𝑘𝑙√𝑛𝐴] 
	 
	The ratio of expressions 𝐸𝑛𝑐 and 𝐸𝑛𝑢 can be estimated as follows: 
	 
	𝜌𝑛𝑒𝑛=𝑐𝑓𝑓𝑐[2𝑘𝑐𝑑̅ +𝑘𝑙√𝑛𝐴] 𝜗(𝑠) 𝜂𝑝𝜂𝑟𝑛𝑑̅  𝑔𝑚(1+ 𝑐𝑚 )  
	 
	where 𝜌𝑛𝑒𝑛 is the relative energy efficiency of UAVs when one ground vehicle serves 𝑛 customers per route (one-to-many service). As previously demonstrated, it is possible to disaggregate the last equation into the following unit-less components: 
	 
	0<1(1+ 𝑐𝑚 )<1    [unit-less] 
	 
	0<𝜂𝑝𝜂𝑟<1   [unit-less] 
	 
	𝑐𝑓𝑓𝑐 𝑔𝑚/ 𝜗(𝑠)    [unit-less] 
	 
	2𝑘𝑐𝑑̅ +𝑘𝑙√𝑛𝐴𝑛𝑑̅    [unit-less] 
	 
	Distance traveled increases linearly with the number of customers for the UAV but at a lower rate for the conventional vehicle. This is reflected in the last expression that is the ratio between conventional vehicle distance and UAV distance; as 𝑛 increases, the relative efficiency of the UAV decreases continuously. Hence, there is a breakeven point for a large enough 𝑛. 
	6.4 RESULTS FOR ONE-TO-MANY ROUTES 
	This section utilizes the same vehicle and UAV already described in the one-to-one case study. Average travel distances and distribution areas that are approximately binding the UAV 25 km range constraint are utilized in this section; the reader should know that this is the most favorable 
	scenario for UAVs. A 25 km distance is approximately 70% of the maximum UAV theoretical range. In practice, the UAV operator has to provide a margin of safety and account for unknown factors that can increase energy consumption, such as headwinds. 
	When assuming a constant and binding UAV range, average distances between depot to customers and service areas are negatively correlated (see 
	When assuming a constant and binding UAV range, average distances between depot to customers and service areas are negatively correlated (see 
	Table 4
	Table 4

	). In 
	Table 4
	Table 4

	, the value 𝑛∗ is the breakeven point, or the number of customers that equalizes the efficiency of a UAV and a conventional vehicle. There are three columns under 𝑛∗. The central column under 21.6 wh/km contains the breakeven point based on the efficiency estimated from the UAV manufacturer specifications. The left column under 10.8 wh/km contains breakeven points based on the efficiency of a future UAV whose efficiency has doubled. The right column under 32.4 wh/km contains breakeven points for a MD4-300

	 
	Table 4: UAV and Diesel Van Breakeven Energy Scenarios - One-to-one Routes 
	Avg. Dist. depot to 
	Avg. Dist. depot to 
	Avg. Dist. depot to 
	Avg. Dist. depot to 
	Avg. Dist. depot to 
	Customers (km) 

	Service 
	Service 
	 Area (km2) 

	𝒏∗ 
	𝒏∗ 



	TBody
	TR
	𝜌1𝑒𝑛~94 
	𝜌1𝑒𝑛~94 
	10.8 wh/km 

	𝜌1𝑒𝑛~47 
	𝜌1𝑒𝑛~47 
	21.6 wh/km 

	𝜌1𝑒𝑛~31 
	𝜌1𝑒𝑛~31 
	32.4 wh/km 


	8 
	8 
	8 

	60  
	60  

	1,340  
	1,340  

	 362  
	 362  

	173 
	173 


	9 
	9 
	9 

	40 
	40 

	785 
	785 

	 224  
	 224  

	113 
	113 


	10 
	10 
	10 

	20 
	20 

	413 
	413 

	 131  
	 131  

	72 
	72 


	11 
	11 
	11 

	7 
	7 

	219 
	219 

	  83  
	  83  

	50 
	50 


	12 
	12 
	12 

	1 
	1 

	127 
	127 

	  58  
	  58  

	37 
	37 




	 
	The figures in 
	The figures in 
	Table 4
	Table 4

	 show a positive correlation between service area size and breakeven number of customers, and a negative correlation between depot distance and breakeven number of customers. As a reference, a typical UPS delivery truck in a dense urban area can deliver 200 to 300 pieces and packages. In some cases where there are multiple deliveries of pieces/packages at the same address—e.g. a large office complex—the number can go up to 300 to 500 pieces. Under adverse delivery conditions, that UAV is not competitive if 

	 
	 
	 

	 
	 
	 

	7.0 MODELING CO2 EMISSIONS
	7.0 MODELING CO2 EMISSIONS
	 

	This sections deals with the estimation of UAV emissions. Leveraging the results of the previous section, two scenarios are analyzed. First, a one-to-one scenario where a vehicle travels to a destination and drops its load and then returns empty to its depot, and later, a one-to-many scenario where a vehicle delivers to multiple destinations before returning empty to its depot. 
	7.1 CO2E EMISSIONS 
	For conventional vehicles, the carbon footprint of the vehicle utilization phase includes well-to-tank (WTT)—emissions that take place along the fuel/energy supply chain—and tank-to-wheel (TTW)—emissions associated with the combustion of the fuel. For a UAV, the carbon footprint includes generation-to-battery (GTB) emissions associated with the electricity supply chain and battery-to-propeller (BTP) emissions. For electric UAVs, the BTP component is zero. 
	WTT emissions for fossil fuels include several stages: petroleum pumping, extracting, transporting, refining in factories, distributing, and dispensing to the vehicles. WTT emissions are estimated using the GREET model (USDoE, 2016); 5.1 lbs CO2e/gallon of diesel or 0.22 kg CO2e/liter of diesel. The TTW emissions associated with burning one gallon of diesel is approximately 22.7 lbs CO2e/gallon of diesel or 2.7 kg CO2e/liter of diesel (USEPA, 2017). The Emissions & Generation Resource Integrated Database (e
	 
	𝑐𝑜2𝑒𝑢 𝐸𝑛𝑢 𝑓  𝑒𝑔𝑡𝑏2 𝑟𝑛  =  𝑔𝑚𝜂𝑝𝜂𝑚𝜂𝑎𝜗(𝑠) (1+ 𝑐𝑚 )2 𝑓𝑘𝑤ℎ 𝑒𝑔𝑡𝑏    𝑐𝑜2𝑒𝑐=100 𝑓𝑐 (𝑒𝑤𝑡𝑡+𝑒𝑡𝑡𝑤)  
	 
	where: 
	𝑐𝑜2𝑒𝑢= UAV equivalent carbon dioxide emissions per unit of distance traveled [kg.CO2e/km] 
	𝑐𝑜2𝑒𝑐= van equivalent carbon dioxide emissions per unit of distance traveled [kg.CO2e/km] 
	𝑓𝑘𝑤ℎ =  factor to convert Joules to kWh = 1 / 3.6 106 [ kWh / Joule] 
	𝑒𝑔𝑡𝑏𝑖=  emissions of the GTB phase [ kg.CO2e / kWh)] 
	𝑒𝑤𝑡𝑡𝑖=  emissions of the WTT phase [ kg.CO2e / liter)] 
	𝑒𝑡𝑡𝑤𝑖=  emissions of the TTW phase [ kg.CO2e / liter)]. 
	 
	The ratio of the last two equations is 𝜌1𝑒𝑚 or the relative emissions efficiency per unit distance of UAVs with respect to ground vehicles. If the last two equations are divided by payload, it is possible to estimate the efficiency per unit of distance and payload. 
	7.2 RESULTS FOR ONE-TO-ONE ROUTES 
	If the analysis is conducted in terms of emissions per unit distance, the advantage of the UAV is even higher because electricity generation is “greener” per unit of energy than diesel fuel. The electricity consumed for the UAV is more than 22 times cleaner than the energy consumed by the van, and the ratio between van and UAV CO2e emissions per unit distance is 𝜌1,1𝑒𝑚= 1,056. 
	Table 5: One-to-one service performance measures 
	Performance Measure 
	Performance Measure 
	Performance Measure 
	Performance Measure 
	Performance Measure 

	Unit* 
	Unit* 

	Van 
	Van 
	(1) 

	UAV 
	UAV 
	(2) 

	Ratio (1)/(2) 
	Ratio (1)/(2) 



	Energy consumed per unit distance 
	Energy consumed per unit distance 
	Energy consumed per unit distance 
	Energy consumed per unit distance 

	wh/km 
	wh/km 

	1,016 
	1,016 

	 21.6 
	 21.6 

	47 
	47 


	Emissions per unit energy consumed 
	Emissions per unit energy consumed 
	Emissions per unit energy consumed 

	gCo2e/wh 
	gCo2e/wh 

	12.6 
	12.6 

	0.6 
	0.6 

	22.5 
	22.5 


	Emissions per unit distance 
	Emissions per unit distance 
	Emissions per unit distance 

	kgCO2e/km 
	kgCO2e/km 

	12.83 
	12.83 

	0.012 
	0.012 

	1,056 
	1,056 


	Payload 
	Payload 
	Payload 

	kg 
	kg 

	1,890 
	1,890 

	5.0 
	5.0 

	378 
	378 


	Energy cons. per unit distance-load 
	Energy cons. per unit distance-load 
	Energy cons. per unit distance-load 

	wh/km-kg 
	wh/km-kg 

	0.54 
	0.54 

	4.32 
	4.32 

	0.12 
	0.12 


	Emissions per unit distance-load 
	Emissions per unit distance-load 
	Emissions per unit distance-load 

	kgCO2e/km-kg 
	kgCO2e/km-kg 

	6.79 
	6.79 

	2.42 
	2.42 

	2.8 
	2.8 




	To improve readability, numbers have been rounded. 
	 
	The performance measures are more favorable for the conventional van when the analysis is done in terms of energy consumption and emissions per unit distance and per kilogram of payload delivered. The van can deliver 378 times more cargo than the UAV; assuming maximum payloads, the van is eight times (1/0.12) more efficient in terms of energy consumption but still almost 2.8 times less efficient regarding GHG emissions. 
	7.3 RESULTS FOR ONE-TO-MANY ROUTES 
	This subsection utilizes the same vehicle and UAV already described in the one-to-one case study. Average travel distances and distribution areas approximately binding the UAV 25 km range constraint are utilized in this section; the reader should note that this is the most favorable scenario for UAVs. A 25 km distance is approximately 70% of the maximum UAV theoretical range. In practice, the UAV operator has to provide a margin of safety and account for unknown factors that can increase energy consumption,
	In terms of emissions, given that 𝜌1𝑒𝑚= 1056 is so high, in practice, it is difficult to find delivery routes where the van is more efficient than an electric UAV in terms of operational emissions. The same emissions are generated if the van travels one time and delivers 1056 packages at once or if the UAV travels back and forth 1056 times and delivers one package at the time. 
	An electric truck will be more competitive in terms of energy and emissions. When comparing an electric truck and UAV, the relative efficiencies in terms of energy and emissions are the same, i.e. 𝜌1𝑒𝑛=𝜌1𝑒𝑚, because the same energy source is utilized to power the electric engines. Assuming that the electric truck has an energy consumption of 760 wh/km (Davis and Figliozzi 2013; Feng and Figliozzi, 2013), then 𝜌1𝑒𝑛=𝜌1𝑒𝑚 = 35. Table 4 shows the results assuming that one electric truck serves the o
	Electric vehicles have steadily become more efficient in the last five years. Small electric vans are also now in the market (mainly in Europe). For example, the 2017 Renault ZE Kangoo has a payload of 600 kg and will consume approximately 205 wh/km in temperate temperatures (Renault, 2017). The 205 wh/km value used in 
	Electric vehicles have steadily become more efficient in the last five years. Small electric vans are also now in the market (mainly in Europe). For example, the 2017 Renault ZE Kangoo has a payload of 600 kg and will consume approximately 205 wh/km in temperate temperatures (Renault, 2017). The 205 wh/km value used in 
	Table 6
	Table 6

	 is more conservative than the ideal value given by the manufacturer (150 wh/km). Against an electric van that can carry 120 times more cargo, the UAV is not competitive in dense delivery areas with more than 10 customers per route, as shown in 
	Table 6
	Table 6

	, right column. 

	Table 6: UAV and Electric Van Breakeven Scenarios – One-to-one Routes  
	Avg. Dist. depot to 
	Avg. Dist. depot to 
	Avg. Dist. depot to 
	Avg. Dist. depot to 
	Avg. Dist. depot to 
	Customers (km) 

	Service 
	Service 
	 Area (km2) 

	𝒏∗ 𝝆𝟏𝒆𝒏~𝟑𝟓  
	𝒏∗ 𝝆𝟏𝒆𝒏~𝟑𝟓  
	vs. E-truck 

	𝒏∗ 𝝆𝟏𝒆𝒏~𝟗.𝟓 
	𝒏∗ 𝝆𝟏𝒆𝒏~𝟗.𝟓 
	vs. E-van 



	8 
	8 
	8 
	8 

	60 
	60 

	 214  
	 214  

	              26  
	              26  


	9 
	9 
	9 

	40 
	40 

	 137  
	 137  

	              20  
	              20  


	10 
	10 
	10 

	20 
	20 

	  85  
	  85  

	              15  
	              15  


	11 
	11 
	11 

	7 
	7 

	  58  
	  58  

	              12  
	              12  


	12 
	12 
	12 

	1 
	1 

	  42  
	  42  

	              10  
	              10  




	 
	An electric tricycle is even more efficient than an electric truck or van in terms of energy consumption and emissions. According Saenz et al. (2016), the real-world energy consumption of a delivery tricycle is approximately 48.65 wh/mile or 30.24 wh/km. With this value, the relative efficiency between an UAV and an electric tricycle is 𝜌1𝑒𝑛=𝜌1𝑒𝑚 = 1.4. When the number of customers per route is relatively small (𝑛<10), the following expression (Figliozzi, 2008) is a better approximation for the VRP d
	Table 7
	Table 7
	Table 7

	 shows the results assuming one electric tricycle serves the one-to-many route. There is a sharp decrease in the values of customers needed to breakeven; tricycles outcompete UAVs in terms of efficiency when two or more customers can be grouped in a route. In 
	Table 7
	Table 7

	, the values of 𝑛∗ are so small that decimals are necessary to show changes. Against an electric tricycle that can carry 40 times more cargo, the UAV is not competitive in routes where it is possible to group two or more customers. 

	 
	Table 7: UAV and Electric Tricycle Breakeven Scenarios – One-to-one Routes 
	Avg. Dist. depot to 
	Avg. Dist. depot to 
	Avg. Dist. depot to 
	Avg. Dist. depot to 
	Avg. Dist. depot to 
	Customers (km) 

	Service 
	Service 
	 Area (km2) 

	𝒏∗ 𝝆𝟏𝒆𝒏~𝟏.𝟒  
	𝒏∗ 𝝆𝟏𝒆𝒏~𝟏.𝟒  
	vs. E-tricycle 



	8 
	8 
	8 
	8 

	60 
	60 

	 2.1  
	 2.1  


	9 
	9 
	9 

	40 
	40 

	 1.9  
	 1.9  


	10 
	10 
	10 

	20 
	20 

	 1.7  
	 1.7  


	11 
	11 
	11 

	7 
	7 

	 1.6  
	 1.6  


	12 
	12 
	12 

	1 
	1 

	1.5 
	1.5 




	 
	 
	The competitiveness of ground vehicles is even higher if vehicle phase emissions are also taken into account, as discussed in the next section. 
	7.4 MODELING VEHICLE PHASE CO2E EMISSIONS 
	The focus of this section is on emissions tradeoffs between UAVs and different types of ground delivery vehicles. It has been correctly argued that the analysis of transportation systems energy and emissions levels should include not only direct tailpipe emissions but also emissions associated with vehicle production and disposal, the fuel/energy source, and required transportation infrastructure (Chester and Horvath, 2009). Lifecycle assessment (LCA) of vehicle emissions provides a more comprehensive view 
	LCA separates emissions along life cycles or phases: extraction of raw materials from the earth, materials processing, manufacturing, distribution, product use and disposal or recycling at the end. We compare last-mile UAVs’ and ground vehicles’ lifecycle CO2e emissions in two distinct phases: (a) vehicle utilization and (b) vehicle production/disposal. In this research, ground vehicle emissions associated with utilization includes well-to-tank (WTT)—the lifecycle of fuel production and distribution—and tan
	In the previous subsections, a detailed analysis of operating emissions was presented, including both WTT and TTW CO2e emissions for ground vehicles and GTB and BTP CO2e emissions for UAVs. This subsection focuses solely on the vehicle production and disposal phase. The vehicle phase includes emissions associated with the extraction of raw materials from the earth, raw materials processing, manufacturing, distribution, and disposal or recycling at the end. 
	GHG emissions for the vehicle phase are estimated using the GREET model, which uses vehicle weight as the functional unit (USDOE, 2016). The GREET model contains hundreds of parameters with default values based on national/regional statics or industrial practice. Detailed 
	documentation of assumptions in relation to industrial processes and technologies are available on GREET publications (USDOE, 2016). For diesel vans and electric tricycles, the same values utilized in previous research efforts are employed. Regarding UAVs, the GREET model does not include a UAV vehicle type. Unlike other flying machines, a major component of the UAV weight is the lithium-ion polymer battery. Hence, the electric UAV was modeled as the sum of two elements: (a) the lithium-ion batteries, and (
	7.4.1 CO2e for Production and Disposal  
	The results of the analysis are shown in 
	The results of the analysis are shown in 
	Table 8
	Table 8

	. The UAV has a much smaller mass and lower vehicle phase emissions per vehicle, but the battery is 40% of its tare. Due to the long recharge time, it is common to have three or more batteries per UAV. Conservatively, only four batteries over the lifetime of the drone are assumed; this is a conservative estimate because a properly maintained lithium-ion polymer battery has less than 1000 recharge cycles on average (Peters et al., 2017). In addition, in proportion to its weight, the UAV has more processors, 
	Table 8
	Table 8

	. 

	 
	Table 8: Vehicle Phase CO2e Emissions 
	Parameter 
	Parameter 
	Parameter 
	Parameter 
	Parameter 

	UAV 
	UAV 

	Tricycle 
	Tricycle 

	Diesel Van 
	Diesel Van 



	Batteries (kg CO2e) 
	Batteries (kg CO2e) 
	Batteries (kg CO2e) 
	Batteries (kg CO2e) 

	435 
	435 

	306 
	306 

	(*) 
	(*) 


	Vehicle (kg CO2e) 
	Vehicle (kg CO2e) 
	Vehicle (kg CO2e) 

	 56  
	 56  

	346  
	346  

	10,076 
	10,076 


	Emissions per unit of vehicle mass  
	Emissions per unit of vehicle mass  
	Emissions per unit of vehicle mass  

	 
	 

	 
	 

	 
	 


	or tare (kg CO2e per kg) 
	or tare (kg CO2e per kg) 
	or tare (kg CO2e per kg) 

	 48.6  
	 48.6  

	 8.7  
	 8.7  

	 4.6 
	 4.6 


	Emissions per unit of payload mass  
	Emissions per unit of payload mass  
	Emissions per unit of payload mass  

	 
	 

	 
	 

	 
	 


	(kg CO2e per kg) 
	(kg CO2e per kg) 
	(kg CO2e per kg) 

	 69.2  
	 69.2  

	 2.6  
	 2.6  

	 5.3  
	 5.3  




	 (*) Included in the vehicle chassis. To improve readability, numbers have been rounded. 
	 
	To estimate the UAV vehicle phase emissions, the following formula was utilized: 𝑛𝑏 𝑤𝑏 𝑒𝑏+𝑚𝑡 𝑒𝑡  
	 
	where: 
	𝑛𝑏:  number of batteries utilized during the UAV lifetime 
	𝑒𝑏:  emissions per kwh (140 kg CO2e per kwh battery)  
	𝑤𝑏: battery storage capacity (777 wh) 
	𝑒𝑡:  emissions per vehicle tare weight (9.3 kg CO2e per kg). 
	 
	To compare vehicle phase emissions with utilization emissions, it is necessary to estimate vehicle phase emissions per delivery, assuming values for the average number of deliveries per day, number of vehicle working days per year, and vehicle productive life. It was already mentioned that in an urban area, a parcel delivery van can easily deliver 150 or more parcels per day; the van assumed in this research can carry up to 375 packages if each package weighs 5 kg. A tricycle is more limited in terms of ope
	7.4.2 CO2e per Delivery  
	Table 9  shows the CO2e efficiency per delivery with the assumed values. Different assumptions will lead to different values, but on a per delivery basis, the tricycle and diesel van seem to have a clear advantage (fourth row of Table 9). To compare the results, it is useful to obtain the equivalent travel distance that will produce the same level of vehicle phase emissions per delivery (fifth row of Table 9). Vehicle phase emissions per delivery are a negligible addition for the diesel van but a major addi
	  
	Table 9: Per Delivery Vehicle Phase CO2e Emissions 
	Parameter 
	Parameter 
	Parameter 
	Parameter 
	Parameter 

	UAV 
	UAV 

	Tricycle 
	Tricycle 

	Diesel Van 
	Diesel Van 



	Number of daily deliveries 
	Number of daily deliveries 
	Number of daily deliveries 
	Number of daily deliveries 

	4 
	4 

	25 
	25 

	150 
	150 


	Delivery days per year (days) 
	Delivery days per year (days) 
	Delivery days per year (days) 

	260 
	260 

	260   
	260   

	260   
	260   


	Vehicle life (years) 
	Vehicle life (years) 
	Vehicle life (years) 

	3 
	3 

	5 
	5 

	10 
	10 


	Emissions per delivery  
	Emissions per delivery  
	Emissions per delivery  

	 
	 

	 
	 

	 
	 


	(kg CO2e per delivery) 
	(kg CO2e per delivery) 
	(kg CO2e per delivery) 

	0.16 
	0.16 

	0.02 
	0.02 

	0.03 
	0.03 


	Equivalent travel distance (in km) 
	Equivalent travel distance (in km) 
	Equivalent travel distance (in km) 

	 
	 

	 
	 

	 
	 


	(kg CO2e per delivery)  
	(kg CO2e per delivery)  
	(kg CO2e per delivery)  

	13.0 
	13.0 

	1.2 
	1.2 

	0.002 
	0.002 


	Range (km)  
	Range (km)  
	Range (km)  

	25 
	25 

	48 
	48 

	625 
	625 


	Equivalent travel distance as % of range 
	Equivalent travel distance as % of range 
	Equivalent travel distance as % of range 

	52 
	52 

	2.5 
	2.5 

	0.0 
	0.0 




	 (*) Included in the vehicle chassis. To improve readability, numbers have been rounded. 
	 
	 
	 

	8.0 OTHER KEY CONSIDERATIONS 
	8.0 OTHER KEY CONSIDERATIONS 
	 

	This research has focused on the analysis of UAV delivery costs, energy consumption, and CO2e emissions. Other important factors that must be considered are briefly summarized in this section but left as future research topics. 
	8.1 SAFETY 
	There is a concern about the risk of a UAV malfunctioning in mid-air, falling from the sky, and damaging property or injuring people. A report commissioned by the FAA (Arterburn et al., 2017) indicates that three vehicle characteristics may contribute to fatal drone collisions: kinetic energy, ignition sources based on vehicle power systems, and vehicle rotating components. The kinetic energy is proportional to the takeoff weight and the square of the aircraft speed. Drone batteries, motors, and potential c
	8.2 NOISE 
	UAV noise is a potential problem for urban deliveries. Noise may hinder deployment or hours of operation and can negatively affect communities and land values (Nelson, 1979) around future UAV depots. Research efforts are still not conclusive regarding the seriousness of UAV noise (Bulusu et al., 2017). However, from a health perspective, the negative impacts of noise are well understood (Passchier-Vermeer and Passchier, 2000; Stansfeld; and Matheson, 2003). 
	8.3 LAST-YARD CONSTRAINTS 
	An often overlooked problem in UAV delivery discussions is the issue of the last yard of the delivery (Figliozzi et al., 2018). Though UAVs’ aerial paths avoid ground congestion and last-mile delivery problems associated to truck parking and unloading, there is a major challenge in terms of the last yard of the delivery process. 
	Urban last-yard deliveries are likely to require landing pads or delivery stations, as well as safe spaces for takeoff and landing (some companies are discussing dropping or parachuting packages). For single home or unit dwellings, the cost implications of the last-yard delivery infrastructure are not yet clear. As discussed in the previous sections, there are clear tradeoffs between UAV size, efficiency, and safety, and size of the last-yard infrastructure. 
	For a multiunit building, rooftops are a largely underutilized urban area that, if retrofitted properly, could become prime delivery nodes for the building (whether it is a condominium, business, or factory). Provided a suitable structure could be built that would protect the packages from the elements as well as proper retrofits that would ensure the safety of people retrieving (or dropping off) their packages, rooftop delivery zones would also keep the items secure from theft. Coupling these landing pads 
	differences between last-yard constraints and possibilities when comparing single home versus multiunit dwellings or buildings. Last-yard costs and constraints may limit the size of the UAVs and therefore limit their efficiency and competitiveness. 
	8.4 URBAN VS. RURAL UAV ECONOMICS 
	The last-yard configuration will influence turnaround time and UAV productivity. Therefore, the economics of UAV deliveries in terms of CPFH will depend on the type of delivery system. Likewise, if additional gear or specialized devices are required to improve package security or safety, the UAV purchase costs will increase and may be another element that differentiates the economics of UAV urban and rural deliveries. 
	Rural areas may also utilize fixed-wing UAVs and parachute-based delivery systems that are more efficient than rotatory wing systems, which require hovering and/or vertical landing and takeoff. There are still a lot of unknowns regarding future costs of UAV deliveries in urban areas. 
	8.5 POTENTIAL MARKETS 
	UAVs for package delivery have a lot of potential to improve logistics productivity and reduce environmental externalities such as trucking diesel engine pollution. However, safety concerns and last-yard constraints are likely to limit the benefits that can be achieved through economies of scale.   
	It is expected that multicopter UAV technology, capabilities, and costs will improve substantially in the near future. Hence, there are still many areas to research and model in terms of UAVs’ costs, markets, potential benefit, and supply chain impacts. 
	 
	9.0 CONCLUSIONS 
	9.0 CONCLUSIONS 
	 

	This research presented novel data and models for deliveries utilizing small UAVs. Small UAVs were defined as aircrafts with a tare of up to 15 kg and a potential payload of up to 15 kg.  
	The survey data shows that UAV payload, size, energy consumption, and cost are positively correlated and tend to increase together. Unfortunately, potential safety, noise, and last-yard constraints also increase as drone capabilities and size increase. 
	Cost metrics such as cost per flying hour (CPFH) are the most relevant for small UAVs since they readily take into account the impact of operator labor cost and utilization, clearly the largest cost components. The economic analysis indicates that labor/staff costs can range between 30% and 85% of UAV costs per flying hour. The impact of labor costs will be highly dependent on future regulations and the level of automation of the last-mile delivery process. 
	Currently-available UAV technology can fill a delivery service niche in sparsely populated areas with a low number of customers and density. In rural areas, the regulatory landscape and last-yard delivery constraints are also more relaxed. In rural areas, the economic benefit brought about by reducing the cost of a driver to visit remote customers are obvious, but in this environment, UAV range is a key consideration. 
	In dense urban areas, several first- and last-mile service, privacy, and regulatory and security issues must be addressed before UAV services are feasible. UAVs are likely to have an edge regarding speed delivery if they are operated in uncongested skies where they can outperform slower ground vehicles that are delayed by conditions of the congested ground road network. On the other hand, drones may not be able to compete in terms of costs with a delivery truck that can deliver hundreds of packages to one l
	This research also has introduced a framework to analyze the real-world energy and emissions efficiency of UAVs and different ground commercial vehicles. The results of the analysis show that UAVs can significantly reduce operational first- and last-mile energy consumption and emissions (both well-to-tank and tank-to-wheel) in some scenarios. The analysis utilizing real-world data indicates that UAVs presently available in the market are significantly more CO2e efficient (around 47 times) than typical UPS d
	The lifecycle analysis shows that UAV vehicle phase emissions are significant and must be taken into account. When vehicle phase emissions are considered, the UAV lifecycle efficiency can be reduced by a significant amount. Considering lifecycle emissions, an electric tricycle is likely to be more CO2e efficient than the UAV. Hence, in dense urban areas where tricycle deliveries are economically feasible (Tipagornwong and Figliozzi, 2014), tricycles are likely to outperform UAVs in terms of both energy cons
	Although it is expected that small UAV technology, capabilities, and costs will improve substantially in the near future (Floreano and Wood, 2015), it is implausible that UAVs will outcompete commercial vehicles in some scenarios. Conventional vehicles outperform UAVs in cases where payloads are not small or if a customer is located far beyond the relatively limited range of a UAV—range is a function of payload and other variables, but for small quadcopter UAVs, practical range is currently less than 25 km.
	Breakthroughs in UAV technologies may affect the typical range of UAVs’ energy consumption (assumed to be 10 to 32 wh/km in this research). For example, small fixed-wing UAVs with VTOL (vertical takeoff and landing) capabilities may become suitable one day for urban deliveries. Fixed-wing UAVs are considerably more energy efficient than multicopters in terms of energy consumption per unit distance flown. The methodology developed in this research will still be applicable even if there are major improvements
	The future of UAV deliveries will also depend on other factors such as UAV noise levels, safety concerns, and last-yard delivery configurations. Future research efforts should study the logistical impacts of these factors. 
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	APPENDIX A 
	 
	UAVS SURVEYED 
	 
	 

	Table 10: List of UAVs and companies surveyed 
	UAV Model 
	UAV Model 
	UAV Model 
	UAV Model 
	UAV Model 

	UAV Manufacturer 
	UAV Manufacturer 



	Aibot X6 
	Aibot X6 
	Aibot X6 
	Aibot X6 

	Aibotix 
	Aibotix 


	Alta 8  
	Alta 8  
	Alta 8  

	Freefly 
	Freefly 


	AR180  
	AR180  
	AR180  

	AirRobot 
	AirRobot 


	AR200  
	AR200  
	AR200  

	AirRobot 
	AirRobot 


	Bebop 2  
	Bebop 2  
	Bebop 2  

	Parrot 
	Parrot 


	Inspire 1 
	Inspire 1 
	Inspire 1 

	DJI 
	DJI 


	Inspire 2  
	Inspire 2  
	Inspire 2  

	DJI 
	DJI 


	Matrice 600  
	Matrice 600  
	Matrice 600  

	DJI 
	DJI 


	Mavic PRO  
	Mavic PRO  
	Mavic PRO  

	DJI 
	DJI 


	Mavrik X8  
	Mavrik X8  
	Mavrik X8  

	SteadiDrone 
	SteadiDrone 


	MD4-1000  
	MD4-1000  
	MD4-1000  

	Microdrones 
	Microdrones 


	MD4-3000  
	MD4-3000  
	MD4-3000  

	Microdrones 
	Microdrones 


	Phantom 3 Pro 
	Phantom 3 Pro 
	Phantom 3 Pro 

	DJI 
	DJI 


	Phantom 3 Standard 
	Phantom 3 Standard 
	Phantom 3 Standard 

	DJI 
	DJI 


	Phantom 4  
	Phantom 4  
	Phantom 4  

	DJI 
	DJI 


	Phantom 4 Advanced 
	Phantom 4 Advanced 
	Phantom 4 Advanced 

	DJI 
	DJI 


	Phantom 4 Pro 
	Phantom 4 Pro 
	Phantom 4 Pro 

	DJI 
	DJI 


	Sky Tech  
	Sky Tech  
	Sky Tech  

	Flytrex 
	Flytrex 


	Skyranger  
	Skyranger  
	Skyranger  

	Aeryon 
	Aeryon 


	Spark  
	Spark  
	Spark  

	DJI 
	DJI 


	Vader HL  
	Vader HL  
	Vader HL  

	Steadidrone 
	Steadidrone 
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